LuxSci

Is the Email Encrypted? How to Tell if an Email is Transmitted Using TLS

encrypted email transmission

SMTP TLS encryption is popular because it provides adequate data protection without creating a complicated user experience for email recipients. Sometimes, though, the experience is too seamless, and recipients may wonder if the message was protected at all.

Luckily, there is a way to tell if an email was encrypted using TLS. To see if a message was sent securely, we can look at the raw headers of the email. However, it requires some knowledge and experience to understand the text. It is actually easier to tell if a recipient’s server supports TLS than to tell if a particular message was securely transmitted.

To analyze a message for transmission security, we will look at an example email message sent from Hotmail to LuxSci. We will explain what to look for when decoding the message headers and how to tell if the email was transmitted using TLS encryption.

An Example Email Message

First, we must understand how an email message typically travels through several machines on its way from the sender to the recipient. Roughly speaking:

  1. The sender’s computer talks to the sender’s email or WebMail server to upload the message.
  2. The sender’s email or WebMail server then talks to the recipient’s inbound email server and transmits the message to them.
  3. Finally, the recipient downloads the message from their email server.

It is step 2 that people are most concerned about when trying to understand if their email message is transmitted securely. They usually assume or check that everything is secure and OK at the two ends. Indeed, most users who need to can take steps to ensure that they are using SSL-enabled WebMail or POP/IMAP/SMTP/Exchange services so that steps 1 and 3 are secure. The intermediate step, where the email is transmitted between two different providers, is where messages may be sent insecurely.

To determine if the message was transmitted securely between the sender’s and recipient’s servers (over TLS), we need to extract the “Received” header lines from the received email message. If you look at the source of the email message, the lines at the top start with “Received.” Let’s look at an example message from a Hotmail user below. The email addresses, IPs, and other information are obviously fake.

LuxSci:

The Outlook email was sent to a LuxSci user. The Received headers appear in reverse chronological order, starting with the server that touched the message last. Therefore, in this example, we see the LuxSci servers first.

Received: from abc.luxsci.com ([1.1.1.1])
	by def.luxsci.com (8.14.4/8.13.8) with ESMTP id r7JEfLgH003867
	(version=TLSv1/SSLv3 cipher=DHE-RSA-AES256-SHA bits=256 verify=NOT)
	for <user-xyz@def.luxsci.com>; Mon, 19 Aug 2019 10:41:21 -0400
Received: from abc.luxsci.com (localhost.localdomain [127.0.0.1])
	by abc.luxsci.com (8.14.4/8.13.8) with ESMTP id r7JEfK0Z030182
	for <user-xyz@def.luxsci.com>; Mon, 19 Aug 2019 09:41:20 -0500
Received: (from mail@localhost)
	by abc.luxsci.com (8.14.4/8.13.8/Submit) id r7JEfKXD030178
	for user-xyz@def.luxsci.com; Mon, 19 Aug 2019 09:41:20 -0500
Received: from dispatch1-us1.ppe-hosted.com (dispatch1-us1.ppe-hosted.com [2.2.2.2])
	by abc.luxsci.com (8.14.4/8.13.8) with ESMTP id r7JEfIkK030002
	(version=TLSv1/SSLv3 cipher=DHE-RSA-AES256-SHA bits=256 verify=NOT)
	for <someone@luxsci.net>; Mon, 19 Aug 2019 09:41:19 -0500

Proofpoint:

LuxSci uses an email filtering service, Proofpoint. Messages reach Proofpoint’s servers before being delivered to LuxSci. Here’s what their servers report about the email transmission:

Received: from unknown [65.54.190.216] (EHLO bay0-omc4-s14.bay0.hotmail.com)
	by dispatch1-us1.ppe-hosted.com.ppe-hosted.com
        (envelope-from <someone@hotmail.com>);
	Mon, 19 Aug 2019 08:41:18 -0600 (MDT)

Outlook:

And finally, here’s what we see from Oultook’s server.

Received: from BAY403-EAS373 ([65.54.190.199]) by bay0-omc4-s14.bay0.outlook.com
       with Microsoft SMTPSVC(6.0.3790.4675); 
       Mon, 19 Aug 2019 07:41:19 -0700

How to Use Received Message Headers to Tell if the Email is Encrypted

The message headers contain information that can help us determine if an email is encrypted. Here are a few helpful notes to help you decode the text:

  1. We said this above, but the message headers appear in reverse chronological order. The first one listed shows the last server that touched the message; the last one is the first server that touched it (typically the sending server).
  2. Each Received line documents what a server did and when.
  3. There are three sets of servers involved in this example: one machine at Hotmail, one machine at Proofpoint, where our Premium Email Filtering takes place, and some machines at LuxSci, where final acceptance of the message and subsequent delivery happened.

Presumably, the processing of email within each provider is secure. The place to be concerned about is the hand-offs between Hotmail and Proofpoint and between Proofpoint and LuxSci, as these are the big hops across the internet between providers.

In the line where LuxSci accepts the message from Proofpoint, we see:

(version=TLSv1/SSLv3 cipher=DHE-RSA-AES256-SHA bits=256 verify=NOT)

This section, typical of most email servers running “sendmail” with TLS support, indicates that the message was encrypted during transport with TLS using 256-bit AES encryption. (“Verify=not” means that LuxSci did not ask Proofpoint for a second SSL client certificate to verify itself, as that is not usually needed or required for SMTP TLS to work correctly). Also, “TLSv1/SSLv3” is a tag that means that “Some version of SSL or TLS was used;” it does not mean that it was SSL v3 or TLS v1.0. It could have been TLS v1.2 or TLS v1.3.

So, the hop between Proofpoint and LuxSci was locked down and secure. What about the hop between Hotmail and Proofpoint? The Proofpoint server’s Received line makes no note of security at all! This means that the email message was probably not encrypted during this step.

Hotmail either did not support opportunistic TLS encryption for outbound emails, or Proofpoint did not support receipt of messages over TLS, and thus, TLS could not be used. With additional context, you can know which server supports TLS and which does not.

In this case, we know that Proofpoint supports inbound TLS encryption. In fact, from another example message where LuxSci sent a message to Proofpoint, we see the Received line:

Received: from unknown [44.44.44.44] (EHLO wgh.luxsci.com)
	by dispatch1-us1.ppe-hosted.com.ppe-hosted.com
        (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits))
	with ESMTP id b-022.p01c11m003.ppe-hosted.com
        (envelope-from <from@domain.com>);
	Mon, 02 Feb 2009 19:28:27 -0700 (MST)

The red text makes it clear that the message was indeed encrypted. Based on the additional context, we can deduce that the Hotmail sending server did not securely transmit the email using TLS.

How To Tell if an Email is Encrypted With TLS

  1. When analyzing your message headers, consider the following items to determine if the email is encrypted:
    1. The receiving server will log what kind of encryption, if any, was used in receiving the message in the headers.
    2. Different email servers use different formats and syntax to display the encryption used. Look for keywords like “SSL,” “TLS,” and “Encryption,” which will signify this information.
    3. Not all servers will record the use of encryption. While LuxSci has always logged encryption use, not every email service provider does. It is possible to use TLS encryption and not log it. Sometimes, there is no way to tell from the headers if a message is encrypted if it is not logged.
    4. Messages passed between servers at the same provider do not necessarily need TLS encryption to be secure. For example, LuxSci has back-channel private network connections between many servers so that information can be securely passed between them without SMTP TLS. So, the lack of TLS usage between two servers does not mean the transmission between them was “insecure.” You may also see multiple received lines listing the same server: the server passes the message between different processes within itself. This communication also does not need to be TLS encrypted.
    5. If you are a LuxSci customer, you can view online email delivery reports to see if TLS was used for any particular message. We record the kind of encryption in the delivery reports, so it’s easy to see which emails were encrypted.

How can you Ensure Emails Are Securely Transmitted?

With some servers not recording TLS in message headers, how can you determine if a message was transmitted securely from sender to recipient?

To answer this question accurately, you must understand the properties, servers, and networks involved. It may be easy to determine that the message was transmitted securely if included in the header information. However, the absence of information does not necessarily mean the message was insecurely transmitted. You can only know this if you know what each system’s servers record.

In our example of a message from Hotmail to LuxSci, you need to know that:

  1. Proofpoint and LuxSci will always log the use of TLS in the headers. We can infer that the Hotmail to Proofpoint transmission was not secure as nothing was recorded there.
  2. The transmission of messages within LuxSci’s infrastructure is secure due to private back channel transmissions. So, even though there is no mention of TLS in every Received line after LuxSci accepts the message from Proofpoint (in this example), transferring the messages between servers in LuxSci is as secure as using TLS. Also, the same server can add multiple received lines as it talks to itself. Generally, these hand-offs on the same server will not use TLS, as there is no need. In the LuxSci example, we see this as “abc.luxsci.com” adds several headers.
  3. We don’t know anything about Hotmail’s email servers, so we don’t know how secure the initial transmissions within their network are. However, since we know they did not securely transmit the message to Proofpoint, we are not confident that the transmissions and processing within Hotmail (which may have gone unrecorded) were secure.

Was the email message sent and received using encryption?

We skipped steps 1 and 3 and focused on step 2 – the transmission between servers. Steps 1 and 3 are equally, if not more, necessary. Why? Because eavesdropping on the internet between ISPs is less of a problem than eavesdropping near the sender and recipient (i.e., in their workplace or local wireless hotspot). So, it’s essential to ensure messages are sent securely and received securely. This means:

  • Sending: Use SMTP over SSL or TLS when sending messages from an email client or use WebMail over a secure connection (HTTPS).
  • Receiving: Ensure your POP or IMAP connection is secured via SSL or TLS. If using WebMail to read your email, be sure it is over a secure connection (HTTPS).
  • WebMail: There is generally no record in the email headers to indicate if a message sent using WebMail was transmitted from the end-user to WebMail over a secure connection (SSL/HTTPS).

You can typically control one side and ensure it is secure; you can’t control the other without taking extra steps. So, what can you do to ensure your message is secure even if it might not be transmitted with encryption or if the recipient tries to access it insecurely?

You could use end-to-end email encryption (like PGP or S/MIME, which are included in SecureLine) or a secure web portal that doesn’t require the recipient to install or set up anything to get your secure email message. These methods meet HIPAA and other regulatory compliance requirements for secure data transmission and provide complete confidence that the message will be sent and received securely.

LuxSci’s SecureLine offers flexible encryption options, including TLS, secure web portal, PGP, and S/MIME. Its dynamic capabilities can determine what types of encryption the recipient’s server supports to ensure your emails are always sent securely. Contact our team today to learn more about how to secure your emails.

Get in touch

Find The Best Solution For Your Organization

Talk To An Expert & Get A Quote




A member of our staff will reach out to you

Get Your Free E-Book!

LuxSci High Email Deliverability Best Practices Paper

What you’ll learn:

Enter your email to download now!

We respect your privacy. No spam, ever.

Related Posts

G2 Reports

LuxSci Earns 11 Badges in G2 Fall 2025 Reports, Including Best Support and Momentum Leader

We’re happy to share that LuxSci has once again been recognized for excellence in the G2 Fall 2025 Reports! Based entirely on verified customer reviews, LuxSci earned 11 G2 badges this season, highlighting our continued commitment to providing exceptional support, driving ROI for our customers, and delivering the best products.

 

From Best Estimated ROI to Momentum Leader, our performance on G2 is a direct reflection of the trust and success of our customers. Let’s take a closer look at what these new accolades mean and why they matter.

What Is G2 and Why Does It Matter?

G2.com is a trusted platform for peer-to-peer business software reviews. G2 publishes quarterly reports that analyze software companies based on verified customer feedback and real-world performance data. For the latest G2 reports, we’re honored to have earned 11 badges for Fall 2025.

Here’s What LuxSci Earned in Fall 2025

LuxSci was awarded a total of 11 badges across multiple categories. These honors reflect customer satisfaction, platform momentum, return on investment, and the quality of support we provide.

LuxSci’s G2 Fall 2025 Badges include:

 

  • Best Support (Secure Email Gateway)
  • Easiest Admin (Email Security)
  • Best Estimated ROI (Email Security)
  • Best Meets Requirements (Secure Email Gateway)
  • Momentum Leader (Multiple Categories)
  • High Performer (Email Encryption)
  • High Performer (Secure Email Gateway)
  • High Performer (Email Security)
  • Users Most Likely to Recommend (Secure Email Gateway)
  • Easiest To Do Business With (Email Encryption)
  • Easiest Setup (Email Encryption)

Why These Badges Matter

Let’s break down a few of the key categories and why they’re worth calling out:

Best Support

This badge shows we’re not just responsive—we’re reliable, helpful, and proactive. Our support team works around the clock to ensure customers feel heard and empowered. It’s a core part of our offering and overall customer experience.

Momentum Leader

This badge is awarded to companies showing significant growth in customer satisfaction, web presence, and employee growth. It means we’re not standing still—we’re scaling smartly, with our customers and partners in mind.

Best Estimated ROI

This one’s big. It means LuxSci offers exceptional value. Customers see real results that justify the investment. This includes secure email with 98% deliverability rates that truly drive better engagement for your healthcare communications and campaigns.

Built for Security and Compliance

At LuxSci, we don’t just build HIPAA compliant, enterprise-grade secure email and marketing tools—we build trusted relationships with our customers and partners. Our focus continues to be:

 

  • Protecting sensitive data with the highest levels of security and compliance
  • Building the best products, so customers have peace of mind
  • Providing unmatched customer support, every step of the way

We’re Not Slowing Down Anytime Soon

With security threats constantly evolving and compliance demands increasing, the need for secure, HIPAA compliant email and communications has never been greater. Whether you’re in healthcare, or regulated industries like financial services, LuxSci is here to ensure your communications stay secure, high-performing, and supported.

 

We’re proud to serve a growing base of professionals who rely on LuxSci every day to keep their sensitive data secure. Want to see what the buzz is about?

 

Explore LuxSci on G2

 

Contact us today to see how we can help you!

Business Associate Agreement

Understanding Business Associate Agreements (BAAs) and Shared Responsibility

Modern-day healthcare organizations rely on a growing array of partners and vendors to provide them with the tools they need to effectively serve patients and customers. 

 

However, while new digital solutions and healthcare ecosystems often result in greater productivity and efficiency, they also increase the number of third parties a company must communicate with and share protected health information (PHI), requiring a business associate agreement (BAA). Unfortunately, this increases the risk of PHI being exposed, as it increases a healthcare organization’s supply chain network and the number of external organizations with access to their data, significantly raising the risk of a security breach. 

 

This is where the concept of shared responsibility comes in. 

 

In this article, we explore the shared responsibility model for data security, explaining the concept, the role of a BAA in shared responsibility, and why healthcare companies need to know how it works and where it factors into their HIPAA compliance efforts. 

What Is The Shared Responsibility Model? 

Shared responsibility is a core data security principle that divides the responsibility for protecting data between a company that collects the data and a vendor that supplies the infrastructure or systems used to process said data.

 

The shared responsibility model grew in prominence as more companies moved to cloud-based environments and applications. In the past, when companies kept their systems and data onsite, they had more control over who could access their data and, subsequently, a better ability to mitigate data security risks.

 

However, in adopting cloud-based infrastructure and applications, companies have to process and store their data in the cloud – often in shared infrastructure with other vendors using the same cloud – which consequently shifts some of the responsibility of information security to the cloud service provider (CSP) itself. This marked a profound shift in the way data was handled, transmitted, and stored – necessitating an evolved approach to data security. 

 

This fundamental shift in the way companies consume infrastructure and use apps ushered in the shared responsibility model: Where the cloud vendor provides the infrastructure or application, including HIPAA compliant and high secure environments, but it’s still the responsibility of the client to configure and use it securely. 

Business Associate Agreements (BAAs) and Shared Responsibility

By detailing the respective responsibilities of healthcare companies or Covered Entities (CEs) and their vendors or Business Associates (BAs) in securing PHI, a Business Associate Agreement is a prime example of shared responsibility. 

 

For example, the Business Associate shoulders the responsibility of providing the data safeguards required by HIPAA to secure patient data, such as infrastructure, encryption, audit logging, and even physical onsite security.

 

The Covered Entity, meanwhile, is responsible for conducting risk assessments, defining access control policies and processes, configuring services accordingly, workforce training, and continuous monitoring.

Additionally, both parties have the obligation to report security incidents to each other, as well as being independently accountable to the U.S. Department of Health and Human Services (HHS).

Why Shared Responsibility Is Essential for HIPAA Compliance

For healthcare companies, having a firm grasp of the shared responsibility model for safeguarding and securing PHI, and how they fit within your overall security posture is essential (for two key reasons).  

Security Gaps

Firstly, clearly understanding the shared responsibility decreases the likelihood of security gaps. If CEs are under the impression that the vendor handles all aspects of data security, they won’t be as vigilant. They’ll be less inclined to configure services, educate their staff accordingly, pay appropriate attention to vendor security alerts, etc. 

 

But the same is also true for BAs: If they assume their client does most of the heavy lifting in securing the data disclosed to them, they could be remiss in their duties to protect it. Without shared responsibility, each side simply assumes the other is covering a safeguard, opening the door for security gaps that malicious actors can exploit.

 

Fortunately, by detailing both parties’ (CEs and BAs) responsibilities and liabilities regarding data protection, a BAA removes this ambiguity and, more importantly, reduces the risk of security gaps. It’s critical to know the details and work with vendors building products for compliance versus implementing a tick-box approach to compliance that places too much burden on the CE.

Covered Entities (CEs) Are Ultimately Accountable

Subsequently, the second reason why it’s essential for CEs to understand the shared responsibility model, and increase their cybersecurity readiness accordingly, is that it’s the CE that’s ultimately held accountable for data breaches. 

 

Mistakenly thinking that a BAA automatically makes them compliant may result in healthcare companies underinvesting in training, monitoring, and incident response. Conversely, understanding that even with a BAA in place, they’re the ones primarily accountable for protecting PHI gives them a greater sense of urgency to properly implement HIPAA compliant security measures. 

The Covered Entity’s Role Within Shared Responsibility

Let’s look at the ways that healthcare companies have to hold up their end in the shared responsibility model. 

Choose Compliance-Conscious Vendors 

First and foremost, companies have to choose the right vendors to supply them with HIPAA compliant services and solutions.

 

Look for companies that market themselves as HIPAA compliant and display a detailed understanding of HIPAA requirements, particularly the HIPAA Security Rule. Do your due diligence and perform deeper dives on potential vendors, researching their stated security features, reviews from existing clients, whether they have certifications like HITRUST – and if they’ve been involved in any data breaches. 

 

Naturally, a core prerequisite of being a HIPAA compliant vendor is being willing to sign a BAA, so you can immediately rule out any vendors not willing to do so. For instance, some healthcare companies may assume they can use widely adopted solutions such as SendGrid, Mailchimp, but they don’t offer a BAA. 

 

Once you’ve confirmed a vendor offers a BAA, look through it to establish its terms and determine if it covers the services you’re interested in. 

Configuration 

Another core component of shared responsibility is comprehensive configuration management. While the BA’s responsibility is to provide a secure solution that satisfies HIPAA requirements, it’s the CE’s responsibility to configure it securely to fit within their IT ecosystem. 

Features that often require configuration include: 

 

  • Access control: Role-based access, Zero Trust, Multi-Factor Authentication (MFA).
  • Encryption settings: Enabling encryption, choosing encryption type, enforcing forced TLS, enabling storage encryption.
  • Feature restrictions: Disabling default configurations that enable integration with non-compliant tools. 
  • Audit logging: Enabling audit logging and configuring log formats.
  • Retention settings: How long to retain audit logs and who is permitted to review them.

Finally, establishing a patch management strategy, i.e., when and how your organization applies software updates, is an important element of configuration.  While the vendor must release updates to fix security vulnerabilities discovered in their solutions, it’s up to healthcare companies to deploy the patches. 

Training

Regardless of how many security features a vendor bakes into their solutions, once deployed by a healthcare company, the tool is only as secure as the practices of their least security-conscious employee. Consequently, companies must train their staff on how to properly use a solution to process protected health information and sensitive data. The more an employee is required to handle PHI, the more thorough and frequent their training should be. 

 

Key aspects of comprehensive cybersecurity training include:

 

  • Common cyber threats: what the most prevalent cyber threats are and how to recognize them.
  • Incident response: how to report a suspected security incident, i.e., who to contact and when. 
  • Specific solution training: how to securely use systems that process PHI
  • Scope awareness: knowing which services within your organization’s IT ecosystem are HIPAA-compliant and which are not

Reporting 

Although both healthcare companies and BAs have notification obligations to the HHS in the event of a data breach involving PHI, it’s the CE that bears most of the investigative burden. 

 

Firstly, while a BA may report a security incident, it’s the CE’s responsibility to conduct a risk assessment to determine the probability of compromise of PHI, assess risk, and determine whether an official notification of a breach to HHS is necessary.

 

Secondly, BAs must notify the CE without unreasonable delay and no later than 60 days after discovery. Although BAs often wait to complete internal investigations before notifying the CE, the CE’s 60-day clock starts upon the BA’s discovery, not upon the BA’s report. Therefore, BA delays can create compliance risks for the CE.

 

To prevent this, where possible, you can include stricter contractual reporting timelines in the BAAs. This constantly keeps your company in the loop, ensuring you have sufficient lead time to complete your own investigations and your HIPAA-regulated deadlines.

LuxSci – Secure Healthcare Communications

Developed specifically to fulfil the stringent regulatory and ever-evolving data security needs of the healthcare sector, LuxSci’s secure email, text, marketing and forms solutions help companies protect PHI and personalize communications.  

 

Equally as importantly, instead of leaving you to “figure it out” – pushing additional responsibility back onto your company – LuxSci has a reputation for the best customer support in the business, offering onboarding, detailed documentation, secure default configurations, and ongoing support to help navigate the murky waters of HIPAA compliance, while getting best-in-class performance out of your solution.

 

Contact LuxSci today to learn more or get a demo.

HIPAA Compliant Email

Signing a BAA Does Not Automatically Make You HIPAA Compliant

For healthcare organizations, choosing the right product and service vendors is essential for achieving HIPAA compliance. One of the key prerequisites of a HIPAA-compliant vendor is the willingness to sign a Business Associate’s Agreement (BAA): a legal agreement that outlines both parties’ responsibilities and liabilities in securing protected health information (PHI). 

However, despite what some healthcare organizations have been led to believe, simply signing a BAA with a vendor doesn’t guarantee your use of their product or service will be HIPAA-compliant. In reality, a BAA is just the beginning, and there are several subsequent actions both healthcare organizations and their supply chain partners must take to ensure the compliant use of PHI, especially over communications channels like email. 

With this in mind, this post explores some of the reasons why signing a BAA on its own doesn’t ensure the security of PHI and protect your organization from HIPAA violations.

Business Associate Agreements (BAAs) Explained 

As touched upon above, a BAA is a legally-binding document established between a covered entity (CE), i.e., healthcare organizations, and a business associate (BA), i.e, any company that handles PHI in providing a CE with products or services. For a BA to handle patient or customer data on behalf of a CE, following HIPAA regulations, there must be a BAA in place. 

A BAA details:

  • Each party’s roles, responsibilities, and liabilities in securing PHI.
  • The permitted uses of PHI by the BA and, conversely, restrictions on any other use.
  • The BA’s responsibilities in implementing appropriate administrative, technical, and physical security measures to best protect PHI.
  • The BA’s obligations to report any unauthorized use, disclosure, or breach of PHI.
  • That the BA is required to assist with patient rights support, i.e., data access, amendments, and accounting of disclosures, when appropriate.
  • The BA’s obligations in making records available for audits or investigations.  
  • The CE’s right to terminate the contract if the BA fails to fulfil their obligations in safeguarding PHI.

Additionally, if a BA employs a third-party company, i.e., a subcontractor, that will have access to a CE’s PHI, they are required to establish a BAA with that company. This then makes the subcontractor a “downstream BA” of the CE, and subject to the same obligations and restrictions placed on the original BA. This ensures the security protections mandated by HIPAA flow down the entire chain of custody for sensitive patient and customer data.

Compliance Considerations After Signing a Business Associate Agreement (BAA)

Now that we’ve covered what a BAA is and the role it plays in ensuring data privacy, let’s move on to exploring some of the key things you have to do following the singing of a BAA to ensure HIPAA compliance.  

1. Both Parties Must Implement HIPAA-Required Data Risk Mitigation Measures 

    First and foremost, while a BAA details each party’s respective responsibilities in implementing measures to protect PHI, both still actually need to implement those required security features to achieve HIPAA compliance. 

    The measures required under HIPAA’s Security Rule, including encryption and access control, are designed to mitigate and minimize the impact of data breaches. So, if a company suffers a security breach and later audits show the required security policies and controls were not in place, they would be subject to the consequences of HIPAA violations, including fines and reputation damage.   

    Also, while a BAA stipulates that the BA is responsible for implementing the HIPAA-required safeguards for the PHI under their care, it doesn’t specify exactly which security measures they must implement. Subsequently, that’s left to the BA to interpret based on their understanding of HIPAA requirements, and how they conduct their required risk assessments.

    For example, if you have a BAA with your email services provider, that alone may not be enough to keep your company or organization HIPAA compliant. That’s because the provider may not have the security measures your organization needs, and instead have a carefully worded BAA that will leave you vulnerable.

    Let’s say your email marketing service provider is a “semi-HIPAA compliant” provider. In these cases, they may not offer email encryption, or the necessary access control measures your organization needs to send PHI and other sensitive information safely. The so-called HIPAA compliance may be limited only to data stored at rest on their servers only.

    In short, although a BAA outlines each party’s commitment to securing data, both parties still have to follow through on implementing risk mitigation measures. Additionally, though a healthcare company has its BA’s assurances that they’ll have the appropriate safeguards in place, CEs often only have limited visibility into its ongoing security posture. As a result, asking the right questions and working with a proven HIPAA compliant provider are critical steps healthcare organizations must take to ensure full compliance.

    2. CEs Must Stick to “In-Scope” Services

      While a BA may provide a CE with a range of services, many limit the coverage of their BAAs to particular “in-scope” services. As a result, if a healthcare organization were to use a service outside the coverage of the BAA, i.e., an “out-of-scope” service, they’d risk exposing patient data and incurring HIPAA violations.

      And, even when a service is in-scope, the BA is still required to configure it properly for it to be compliant. These configurations could include:

      • Enabling encryption
      • Establishing access control
      • Activating multi-factor authentication (MFA)
      • Turning on audit logging 

      With this in mind, it’s crucial to ensure that the “complete” service or tool – not just a part of it – is covered by a BAA before using it to process PHI. Similarly, check the terms of your BAA for configuration or security best practices that offer guidance on fully HIPAA compliant use, and make sure your responsibilities as a CE are 100% clear.

      3. Staff Must Be Trained to Securely Handle PHI 

        Another key reason that signing a BAA doesn’t automatically result in HIPAA compliance is the likely need for both parties to educate their staff on how to securely handle sensitive data, such as PHI.

        Firstly, as discussed above, only some of the services offered by a BA may be covered by its agreement. Subsequently, a healthcare organization’s employees need to be sufficiently trained on the use and disclosure of PHI, namely, the services in which they’re permitted to process PHI and which, in contrast, services are non-compliant.

        By the same token, as well as implementing the stipulated safeguards, BAs are responsible for training their workforce on how to use and, where appropriate, configure them. This will help ensure the limited, correct use and disclosure of PHI as allowed by the BAA. 

        4. Reporting Requirements

          A BAA stipulates that a BA must notify the CE in the event of improper or unauthorized use of PHI. More specifically, this includes: 

          • Reporting immediately any use or disclosure not permitted by the terms of the BAA.
          • Notifying the CE of security incidents resulting in the potential exposure of  PHI.

          However, the commitment to reporting in the BAA and the ability to deliver on that commitment are two different things entirely. Firstly, the BA must implement the policies and infrastructure that allow for timely incident reporting. This includes conducting risk analysis, implemeting continuous monitoring, and developing a robust incident response plan. 

          Additionally, a key aspect of prompt, comprehensive reporting includes the BA ensuring that their staff are sufficiently trained to detect and report security events. As part of their training on the secure handling of PHI, a BA’s employees must be able to recognize common security issues and threats, such as improper email configurations and phishing attempts, and how to report them.

          5. Subcontractor BAAs

            While CEs must sign BAAs with their BAs for the compliant use and disclosure of PHI, they don’t have to sign such agreements with any subcontractors the BA may employ. Instead, it’s the responsibility of the BA to enter into their own business associate agreements with their subcontractors. As a result, the original security obligations are passed all the way down the data’s chain of custody. 

            While a CE can take certain measures to enforce this, such as requesting proof of subcontractor BAAs – or even the ability to review subcontractors before beginning engagement – ultimately, they have little control over their security postures. Ultimately, this means that they have to trust that the original service BA does their due diligence in selecting security-minded subcontractors, with the right PHI safeguards in place.  

            HIPAA Compliance Beyond a BAA with LuxSci

            LuxSci’s secure healthcare communications solutions – including HIPAA compliant email, text, marketing and forms – are designed specifically with the stringent compliance requirements of the healthcare industry in mind. 

            LuxSci also provides onboarding, comprehensive documentation, and support to ensure your infrastructure configurations align with HIPAA requirements, so you can confidently include PHI in your healthcare engagement communications campaigns.

            Contact LuxSci today to discover more about achieving compliance beyond obtaining a BAA.

            healthcare marketing

            How Hypersegmentation Drives Greater Healthcare Marketing Engagement

            In healthcare marketing, effective engagement is crucial. It’s imperative that healthcare providers, payers, and suppliers know how to connect with their patients and customers, keeping them aware of all aspects of their healthcare journey – and empowering them to participate as much as possible. 

            This is where segmentation comes in. 

            Instead of sending out healthcare marketing email communications that appeal to as many people as possible, segmentation enables healthcare companies to appeal to specific individuals or groups. It opens the doors for scenarios in which patients and customers see a message in their inbox and think, ‘this message is for me’. 

            With that goal in mind, this post explores use cases and best practices in segmentation, why it’s so important for healthcare companies, and different ways that marketers can segment their audiences for optimal patient and customer engagement.

            What is Segmentation?

            Segmentation is the process of dividing your contact list, or audience, into smaller groups based on shared data, including protected health information (ePHI) characteristics. This could include demographics (age, gender, geographic location, etc.), medical conditions, risk factors, behaviors, and so on. 

            Why Segmentation is Essential in Healthcare Email Marketing

            For healthcare organizations, segmentation is a highly effective, and essential, strategy for sending patients and customers personalized email messaging. Personalized emails are more relevant to the recipient, which greatly increases the chance of them capturing their attention and subsequent engagement. 

            This allows healthcare companies to successfully achieve the objective of their email campaigns, whether that’s reducing the number of appointment no-shows, increasing adherence to care plans, securing payments, or boosting sign-ups or sales. More importantly, patients and customers are more involved in their healthcare journey, staying on top of upcoming appointments, receiving applicable advice and recommendations, and becoming aware of products and services that may prove beneficial to their health, improving overall outcomes. 

            Additionally, dividing audiences into distinct groups gives healthcare organizations invaluable insights into the behaviour and needs of different segments at different stages of the healthcare journey. 

            For instance, an email campaign targeting a particular segment may reveal that they’re more likely to miss appointments than other groups. Similarly, segmentation may highlight that a certain high-risk group neglects to book recommended health screenings. Such insights enable healthcare providers, payers, and suppliers to improve their email engagement strategies, to drive more desirable outcomes and, ultimately more satisfied, loyal, and, above all, healthier patients and customers. 

            How Can Segmentation Aid HIPAA Compliance?

            Another considerable benefit of segmentation for healthcare organizations is that it supports their HIPAA compliance efforts. Because segmentation necessitates setting precise rules that control which individuals receive particular emails, it greatly mitigates the risk of accidentally sending sensitive patient data to the wrong person. 

            Let’s say, for instance, that you want to conduct an email campaign targeting expectant mothers. By creating a segment comprised of pregnant patients or customers using the appropriate data field, you ensure that sensitive, pregnancy-related information is only sent to relevant parties. By reducing the likelihood of disclosing PHI to the wrong individuals, segmentation not only helps maintain regulatory compliance, but also preserves patient trust and confidence in your organization.

            Different Ways to Segment Your Audience 

            Demographic Segmentation

            This involves grouping individuals by shared demographic attributes such as:

            • Age
            • Gender
            • Location
            • Ethnicity
            • Education Level
            • Employment Status
            • Marital Status
            • Family Status
            • Socioeconomic Status (Income)
            • Spoken Languages / Preferred Language
            • Income
            • Insurance Coverage Type
            • Religious or Cultural Affiliations

            Demographic information is a very powerful way to segment audiences to send them valuable, highly relevant information, for example:

            • Sending mammogram or prostate screening recommendations to women or men over a certain age. 
            • Sending health alerts to people in a certain region or ZIP code in response to the emergence of a disease in their area (e.g., flu, a new COVID strain). 
            • Making educational material easy to understand and informative. 

            Clinical Segmentation

            Here, individuals are grouped according to medical criteria, such as:

            • Health conditions
            • Prescribed medications
            • Treatment plans
            • Recent surgeries or medical procedures 
            • Recent lab test results
            • Hospitalization history
            • Vaccination status

            This enables healthcare organizations to craft a wide range of specific communications that hone in on particular patients and customers, including:

            • Disease management and preventative care advice for people suffering from certain conditions, e.g, how diabetic patients can best monitor and manage their blood sugar.
            • Recovery guidance for post-operative patients. 
            • Feedback requests for individuals on particular treatment plans, in an effort to optimize them. 

            Healthcare Journey Stage Segmentation

            This divides individuals according to their position in their care journey within your organization. 

            For healthcare providers, new patients should receive onboarding materials, explanations of services and how to make the most of them, and similar materials that help them feel welcome and informed. Existing patients, meanwhile, can be further segmented into active, overdue (inactive), or high-risk groups – all of which have different needs and ways in which they should be communicated with: 

            • Active patients: appointment reminders, educational materials, event and service recommendations, satisfaction surveys, etc. 
            • Overdue and inactive patients: appointment or payment reminders, re-engagement communications, etc. 
            • At risk patients: more frequent communications, care coordination messages, or support service referrals

            Behavioral Segmentation

            This method of segmentation is based on how recipients interact with emails or services, including:

            • How often they open emails.
            • If they click through on links.
            • If they use patient portals.
            • If they complete forms.
            • How often they attend scheduled appointments. 

            This segmentation empowers healthcare organizations to tailor the content type, frequency, and calls-to-action based on real engagement insights, and also carry out automated workflows based on each individual’s interaction with an email.

            Supercharge Your Segmentation with LuxSci

            LuxSci’s empowers healthcare organizations to effectively segment their contact lists into distinct target audiences for greater engagement in the following ways:  

            • LuxSci Secure Marketing features powerful hypersegmentation capabilities for granular targeting that increase opens, clicks and conversions for your healthcare marketing campaigns. 
            • LuxSci Secure High Volume Email enables companies to execute campaigns encompassing hundreds of thousands or millions of emails, targeting specific groups and audiences. 
            • Easy integration with EHR, CDP, and CRM systems to leverages deeper levels data for highly targeting, highly personalized email campaigns. 

            Reach out today to learn how LuxSci can help you reach more patients and customers, drive more engagement and conversions, and improve overall outcomes.

            You Might Also Like

            HIPAA compliant marketing automation

            How Do I Make My Computer HIPAA Compliant?

            Making a computer HIPAA compliant involves implementing security measures that protect electronic protected health information according to HIPAA regulations. This includes encryption, access controls, automatic logoff, audit controls, and malware protection. No single setting makes a computer HIPAA compliant, as becoming HIPAA compliant requires a combination of hardware controls, software configurations, and appropriate user behavior to protect patient information from unauthorized access or disclosure.

            Hardware Security Considerations

            Computer hardware plays a role in HIPAA compliance through physical protection measures. Laptop privacy screens prevent visual access to patient information when working in public spaces. Cable locks secure devices to prevent theft when left unattended. Hard drive encryption provides protection if devices are lost or stolen. For desktop computers, positioning screens away from public view helps prevent incidental disclosure of patient information. Physical access controls limit who can use the device, particularly in shared clinical environments. These hardware elements work with software protections to create a more secure environment for patient data.

            Operating System Protections

            Modern operating systems include several built-in security features that support HIPAA compliance when properly configured. Automatic operating system updates ensure security patches are applied promptly to address vulnerabilities. User account controls create separate profiles for different staff members with appropriate permission levels. Disk encryption protects data if computers are lost or stolen. Inactivity timeouts automatically lock screens after periods without user input. Firewall configurations block unauthorized network access attempts. These operating system settings form the foundation of a HIPAA compliant computer environment.

            Data Encryption Implementation

            HIPAA requires encryption for protected health information, making this a fundamental element of computer compliance. Full-disk encryption protects all data stored on computer hard drives. File-level encryption allows protection of individual documents containing sensitive information. Email encryption secures patient information sent through electronic messages. Virtual Private Networks (VPNs) encrypt data transmitted over public networks. Proper encryption key management ensures authorized users maintain access while protecting against unauthorized disclosure. Many healthcare organizations establish encryption standards for all devices handling patient information.

            Access Control Mechanisms

            Restricting who can use computers and access patient information represents a central aspect of being HIPAA compliant. Strong password policies require complex passwords that change regularly. Multi-factor authentication adds additional verification beyond passwords. Automatic logoff terminates sessions after periods of inactivity. Role-based access limits information viewing based on job responsibilities. Session monitoring records login attempts and system usage patterns. User provisioning procedures ensure access rights change when staff roles change. These access controls help prevent both unauthorized external access and inappropriate internal information viewing.

            Malware Protection Systems

            Healthcare computers need robust protection against malicious software that could compromise patient data. Antivirus software scans for known threats and suspicious behaviors. Anti-malware tools provide additional protection against ransomware and other evolving threats. Email filtering helps prevent phishing attempts targeting healthcare staff. Web filtering blocks access to dangerous websites that might install malware. Application controls prevent unauthorized software installation. Regular malware definition updates ensure protection against new threats. These protections work together to defend against various attack vectors that could compromise patient information.

            Documentation and Monitoring

            HIPAA compliance requires ongoing monitoring and documentation of computer security measures. Activity logs record who accessed what information and when. Audit tools analyze these logs for unusual patterns that might indicate security problems. Vulnerability scanning identifies potential security weaknesses before they lead to breaches. Incident response procedures outline steps for addressing potential security issues. Security assessment documentation demonstrates compliance efforts during audits or reviews. These monitoring practices help healthcare organizations maintain compliance while providing evidence of their security efforts when questions arise.

            patient engagement

            What is the Meaning of Patient Engagement?

            Patient engagement refers to the active participation of individuals in their healthcare through informed decision-making, self-management, and collaborative relationships with providers. This approach involves patients taking an active role in their treatment plans, communicating with healthcare teams, and managing their health between clinical visits. Patient engagement connects to improved health outcomes, higher satisfaction, and more efficient healthcare delivery by creating partnerships between patients and their care providers.

            Core Components of Patient Engagement

            Patient engagement encompasses several elements that work together to create meaningful healthcare participation. Knowledge and education are the base of patient engagement, providing patients information about their health conditions and treatment options. Two-way communication channels allow patients to share concerns, ask questions, and provide feedback to their healthcare team. Self-management tools help patients monitor symptoms, follow treatment plans, and make health-promoting lifestyle changes. Shared decision-making involves patients and providers discussing options and selecting treatments that align with patient values and preferences. Technology platforms often support these components through patient portals, mobile apps, and remote monitoring devices. When combined effectively, these elements create healthcare experiences where patients actively participate rather than passively receive care.

            Evolution of Patient Engagement Concepts

            The understanding of patient engagement has developed over decades as healthcare delivery models have changed. Traditional paternalistic approaches positioned doctors as decision-makers with minimal patient input. The informed consent movement established patients’ rights to understand treatments before agreeing to them. Consumer-directed healthcare introduced market concepts with patients viewed as consumers making choices. Patient-centered care expanded this view by recognizing patients’ unique needs, preferences, and life circumstances. Modern patient engagement builds on these previous concepts while emphasizing active participation and partnership. This evolution reflects broader societal changes in information access, consumer expectations, and understanding of what creates effective healthcare. Today’s patient engagement models acknowledge that health outcomes improve when patients participate fully in their care.

            Impact on Health Outcomes

            Research consistently shows that effective patient engagement leads to improved health results across numerous conditions. Engaged patients typically experience better control of chronic diseases like diabetes and hypertension through more consistent medication adherence and lifestyle management. Surgical patients who actively participate in pre-procedure education and post-operative care plans often recover faster with fewer complications. Mental health treatment shows greater effectiveness when patients actively participate in therapeutic approaches and decision-making. Prevention efforts achieve better results when individuals engage in recommended screenings and health maintenance activities. These outcome improvements stem from better treatment adherence, earlier problem identification, and care plans that align with patients’ actual lives and capabilities. Healthcare organizations increasingly focus on patient engagement as a core strategy for improving clinical quality measures.

            Healthcare System Benefits

            Beyond individual health improvements, patient engagement creates advantages for healthcare systems and organizations. Engaged patients typically use healthcare resources more efficiently, with fewer unnecessary emergency department visits and hospitalizations. Appointment attendance rates improve when patients actively participate in scheduling and understand the purpose of visits. Preventive care utilization increases, potentially reducing costly interventions for advanced disease. Staff satisfaction often improves through more productive patient interactions and shared responsibility for outcomes. Healthcare organizations find that focusing on patient engagement helps meet quality metrics tied to value-based payment models. Patient feedback provides valuable insights for service improvements when organizations create meaningful engagement channels. These system benefits make patient engagement a strategic priority for healthcare organizations in competitive markets.

            Technology and Patient Engagement

            Digital tools have transformed how patient engagement functions in modern healthcare settings. Patient portals provide secure access to medical records, test results, and communication channels with care teams. Mobile health applications help patients track symptoms, medications, and health metrics between appointments. Wearable devices gather health data that patients and providers can use for monitoring and decision-making. Telehealth platforms extend access to care beyond traditional office visits. These technologies remove barriers to engagement by making information and communication more accessible regardless of location or time constraints. While technology alone doesn’t create engagement, thoughtfully designed digital tools can facilitate greater patient participation in healthcare activities and decisions. Healthcare organizations increasingly view technology investment as essential for effective patient engagement strategies.

            Implementation Challenges and Solutions

            Healthcare organizations face various obstacles when trying to improve patient engagement. Health literacy varies widely, affecting patients’ ability to understand medical information and participate in decisions. Digital access and technical skills create potential disparities in who can use engagement tools. Time constraints during appointments limit opportunities for meaningful patient-provider discussion. Healthcare teams may lack training in engagement techniques like shared decision-making and motivational interviewing. Organizations address these challenges through health literacy assessment and education programs, simplified communication approaches, and multiple engagement channel options beyond digital platforms. Staff training in patient activation methods helps healthcare teams support engagement effectively. Workflows redesigned to prioritize engagement activities create space for meaningful patient participation despite busy clinical environments.

            What is a HIPAA Compliant Message

            What is a HIPAA Compliant Message?

            A HIPAA compliant message securely transmits protected health information while meeting the Security Rule requirements for confidentiality, integrity, and availability. These messages include proper encryption during transmission, verification of recipient identity, access controls, and audit logging capabilities. Healthcare organizations must implement appropriate protections and establish usage policies governing how staff communicate protected health information to maintain compliance with HIPAA regulations.

            Requirements for Secure Messaging

            A HIPAA compliant message must incorporate several protections to safeguard patient information. Encryption during transmission prevents unauthorized interception of message contents while traveling between sender and recipient. Authentication mechanisms verify the identity of both senders and recipients before allowing access to message contents. Access controls restrict message viewing to authorized individuals with legitimate need for the information. Audit logging creates records of message sending, receipt, and viewing activities with timestamps and user identification. Message integrity protections prevent undetected alterations during transmission or storage. Organizations must implement these safeguards across all platforms used for sending HIPAA compliant messages, including email systems, patient portals, and secure messaging applications.

            Message Content Considerations

            ]The content within a HIPAA compliant message must follow several guidelines to maintain regulatory compliance. Messages should include only the minimum necessary information required for the intended purpose, avoiding excessive disclosure of patient details. Identifiable patient information must be clearly separated from general communication content for proper protection. Message subjects and headers should avoid revealing protected health information that might be visible in notification previews. Disclaimers typically appear at message ends stating confidentiality requirements and instructions for unintended recipients. Healthcare organizations develop content templates that help staff compose a HIPAA compliant message with appropriate structure and security notices. Proper content structuring ensures information remains protected throughout its communication lifecycle.

            Acceptable Messaging Platforms

            Healthcare organizations can send HIPAA compliant messages through various platforms that meet security requirements. Secure email systems with encryption and access controls provide one common method for protected communications. Patient portal messaging offers a controlled environment where both providers and patients access information through authenticated sessions. Secure text messaging applications designed for healthcare use encrypt communications between clinical staff members. Telehealth platforms include messaging components that maintain security during virtual visits. Fax transmissions to verified numbers remain acceptable for many healthcare communications when received by authorized recipients. Regardless of platform choice, organizations must verify that protections, Business Associate Agreements, and usage policies align with HIPAA requirements for their selected communication channels.

            Patient Authorization Requirements

            HIPAA compliant messages containing protected health information must adhere to patient authorization requirements. Communications for treatment, payment, and healthcare operations generally proceed without specific patient permission. Messages for other purposes often require documented patient authorization before sending. Patient preferences for communication methods should be recorded and respected for all messages. Some patients may authorize unencrypted communications after being informed of the risks, though organizations should document these preferences carefully. Authorization requirements apply regardless of the security measures implemented for message transmission. Healthcare organizations must train staff to recognize which communications require patient authorization and how to properly document these permissions.

            HIPAA Compliant Messaging Documentation

            Healthcare organizations must maintain documentation about their HIPAA compliant messaging practices. Policies should clearly define what constitutes appropriate message content and which communication channels may be used for different information types. Procedure documents need to outline steps for sending protected information through various platforms. Training records demonstrate that staff understand proper messaging protocols and security requirements. Technology configurations for messaging systems should be documented to demonstrate appropriate security settings. Audit logs from messaging platforms provide evidence of compliance with access and monitoring requirements. This documentation helps organizations demonstrate their compliance efforts during regulatory reviews or investigations of potential violations.

            Messaging Security Breach Prevention

            Preventing security breaches represents a crucial aspect of maintaining HIPAA compliant messaging systems. Staff education about phishing threats and social engineering helps prevent credential theft that could lead to unauthorized message access. Message recall capabilities allow addressing accidental disclosures before they become reportable breaches. Automatic lockout after failed login attempts prevents password guessing attacks against messaging accounts. Message expiration and automatic deletion policies reduce the risk window for stored communications. Regular security assessments identify potential vulnerabilities in messaging systems before they can be exploited. Healthcare organizations combine these preventive measures with monitoring systems that detect potential messaging security incidents early, allowing rapid response before patient information becomes compromised.

            AES-256 Maximal Security

            Enhanced Security: AES-256 Encryption for SSL and TLS

            AES-256 EncryptionSSL and TLS play critical roles in securing data transmission over the internet, and AES-256 is integral in their most secure configurations. The original standard was known as Secure Sockets Layer (SSL). Although it was replaced by Transport Layer Security (TLS), many in the industry still refer to TLS by its predecessor’s acronym. While TLS can be relied on for securing information at a high level—such as US Government TOP SECRET data—improper or outdated implementations of the standard may not provide much security.

            Variations in which cipher is used in TLS impact how secure TLS ultimately is. Some ciphers are fast but insecure, while others are slower, require a greater amount of computational resources, and can provide a higher degree of security. Weaker ciphers—such as the early export-grade ciphers—still exist, but they should no longer be used.

            The Advanced Encryption Standard (AES) is an encryption specification that succeeded the Data Encryption Standard (DES). AES was standardized in 2001 after a five-year review and is currently one of the most popular algorithms used in symmetric-key cryptography. It is often seen as the gold standard symmetric-key encryption technique, with many security-conscious organizations requiring employees to use AES-256 for all communications. It is also used prominently in TLS. (more…)