LuxSci

How Can I Prove an Email was Sent to Me?

searching for an email

Almost everyone has been in this situation: someone claims to have sent you an email message, but you look in your inbox and don’t see it. As far as you know, you never got it. How can you prove an email was sent?

searching for an email

How to Prove That an Email was Sent

So, where do you start? As the purported recipient of an email message, the easiest way to prove that a message was sent to you is to have a copy of that message. It could be:

  1. In your inbox or another email folder
  2. A copy in your permanent email archives

 Sometimes, missing emails are caused by simple user errors. The obvious place to start the search is in your inbox and email folders. It’s also a good idea to check your email filtering and archival services. It’s possible that your email filtering system accidentally flagged the message as spam or sent it to quarantine. If it’s not there, check your email archival system. That should capture a copy of all sent and received messages. 

Hopefully, that will solve the issue. If it doesn’t, it’s worth stepping back to understand where the email could have gone and where you should turn next to solve the problem.

What happened to the email?

In reality, there are only a few things that could have happened:

  1. The recipient never sent the message.
  2. The recipient did send the message, but it did not reach you.
  3. The message did make it to you, but it was accidentally or inadvertently deleted (or overlooked).

Let’s begin with what you can check and investigate. Start your search soon. The more time that elapses, the less evidence you may have, as logs and backups get deleted over time.

Did the recipient actually send the message?

First, you should know that the sender could have put tracking on the message so that they were informed if you opened or read it (even if you are unaware of the tracking). In such cases, the sender can disprove false claims of “I didn’t get it!” If you are concerned about an email being ignored, use read recipients or tracking pixels to confirm email delivery.  

If you never saw the message, do what we discussed above and start searching your email folders for it. It could have been accidentally moved to the wrong folder or sent to the Trash folder. If you have a folder that keeps copies of all inbound emails (like LuxSci’s “BACKUP” folder), check there too. Check your spam folder and spam-filtering system. Your spam-filtering system may also have logs that you can search for evidence of this message passing through it. Finally, check any custom email filters you may have set up with your email service provider or in your email programs. If you have filters that auto-delete or auto-reject some messages, see if that may have happened to the message in question.

The searches above are straightforward; you can do many of them yourself. Often, they will yield evidence of the missing message or explain why you might not have received it.

Maybe the email was sent but didn’t make it to you?

Email messages leave a trail as they travel from the sender to the recipient. This trail is visible in the “Received” email headers of the message (if you have it) and in the server logs at the sender’s email provider and your email provider. If you know some aspects of the message in question (i.e., the subject, sender, recipient, and date/time sent), you can ask your email service provider to search their logs to see if there is any evidence of such a message arriving in their systems. This will tell you if such a message reached your email provider. However, email providers can typically only search the most recent one to two weeks of logs. So, if the message in question was from a while ago, your email service provider may be unable to help you (or may charge you a lot of money to manually extract and search archived log files if they have them). 

If your email provider has no record of the message or cannot search their logs, you (or the sender) can ask the same question of the sender’s email provider. If they can provide records of such an email being sent through their system, that will prove the email was sent.

The log file analysis provided by the email providers could also explain why you didn’t get the message. Your email address might have been spelled wrong, there could have been a server glitch or issue, etc. However, if the message was sent long ago, the chance of learning anything useful from the email provider is small. Also, if you use a commodity email provider such as AOL, Yahoo, Outlook, Gmail, etc., you may find it impossible to contact a technical support person and have them perform an accurate and helpful log search. Premium providers, like LuxSci, are more likely to support your requests. 

The last thing you can do is have the sender review their sent email folders for a copy of that message. If they have it, that can indicate that they sent it and can reveal why you didn’t get it (i.e., wrong email address, content that would have triggered your filters, etc.). However, be wary. It is easy to forge a message in a sent email folder, so it should not be considered definitive proof that the message was sent. And, even so, just because the message was sent, it does not prove it ever made it to your email provider or inbox.

The recipient never actually sent the email message

If the sending event was recent, then the data from your email service provider can prove that the message did not reach you, but that doesn’t prove that it was not sent. The sender may claim that they do not have a record of sent messages and that their email provider will not do log searching, and that may also be true. At this point, you are stuck without a resolution. 

While email is a reliable delivery system, there are many ways for messages not to make it to the intended recipient. Whether it was not sent or was sent and never arrived, the result is the same- no message for you. As a result, it’s best not to send legal notices or other important documents only by email. Using read receipts and other technologies when sending important messages can help increase confidence that an email was sent and received. Still, there is no foolproof way to guarantee email delivery.

How Do I Prove the Email Sender’s Identity?

A separate but related question is, how can I be sure the sender is who they say they are? Social engineering is rising, and cybercriminals can use technology to impersonate individuals and companies. If you are questioning whether the sender actually sent the message to your inbox (or if it is from a spammer or cybercriminal), it is necessary to perform a forensic analysis of the email headers (particularly the Received lines, DKIM signatures, etc.) and possibly get the sender’s email provider involved to corroborate the evidence. To learn more about how to conduct this analysis, please read: How Spammers and Hackers Can Send Forged Email.

Picture of LuxSci

LuxSci

Get in touch

Find The Best Solution For Your Organization

Talk To An Expert & Get A Quote




A member of our staff will reach out to you

Get Your Free E-Book!

LuxSci High Email Deliverability Best Practices Paper

What you’ll learn:

Related Posts

HIPAA compliant email

Most Popular LuxSci Blog Posts of 2025

As we close out 2025, healthcare communicators, IT and compliance leaders, and digital marketers face an ever-changing landscape of security threats, regulatory updates, and technology innovations. At LuxSci, we’re committed to helping you with continuous updates and guidance on the future of secure healthcare communications.

In case you missed it, or need a refresh, below are some of our most popular blog posts from 2025. Enjoy!

1. Improve Email Engagement and Marketing Results with Automated Workflows

Automated workflows are transforming how healthcare organizations engage patients and customers — enabling dynamic, event-driven campaigns that easily scale your outreach and keep you HIPAA compliant. In this post, we introduce LuxSci’s Automated Workflows capability for our Secure Marketing healthcare solution. Learn how sequence-based journeys can personalize outreach and optimize engagement with behavior-based triggers that improve campaign performance — without sacrificing data security.

Read the full post: LuxSci Enhances Secure Marketing with Automated Workflows

2. Healthcare Email Threat Readiness Strategies

Email remains a frontline channel for healthcare communications, and a prime target for cyber threats and criminals. This deep-dive into email threat readiness strategies covers essential practices like continuous monitoring, business continuity planning, and workforce training to mitigate email-borne security risks. Whether you’re responsible for clinical systems, marketing, or enterprise IT, this post provides a strategic playbook to strengthen your defenses, while maximizing your results.

Read the full post: Healthcare Email Threat Readiness Strategies

3. HIPAA Compliant Email — 20 Tips in 20 Minutes

For practical guidance you can apply right now, this on-demand webinar distills 20 key tips for HIPAA-compliant email across technical, legal, and operational domains. Whether you’re refining your infrastructure, improving deliverability, or modernizing your data security posture in 2026, this resource is a time-efficient way to elevate your compliance and security.

Read the post and watch the webinar on demand: HIPAA Compliant Email: 20 Tips in 20 Minutes

4. Is SendGrid HIPAA-Compliant? What You Should Know

Choosing the right email provider matters, especially when Protected Health Information (PHI) is at stake. In this post, we examine SendGrid’s capabilities in the context of HIPAA compliance, outline what it takes to send PHI securely, and offer guidance on evaluating third-party services for secure healthcare email and communication needs.

Read the full post: Is SendGrid HIPAA-Compliant?

5. LuxSci Shines in G2 Winter 2026 Reports

Customer feedback matters to LuxSci. In this post, we share the most recent news about LuxSci’s performance in the G2 Winter 2026 Reports, where we earned 20 badges across categories like Email Security, Encryption, Gateway, and HIPAA-Compliant Messaging. These reviews reflect not just product excellence, but trust from real users, which we work hard to build every day!

Read the full post: LuxSci Shines in G2 Winter 2026 Reports

Looking Ahead to 2026

We look forward to providing more information and insights on secure healthcare communications in the coming year, including the latest on HIPAA compliant email, PHI security, healthcare marketing, threat readiness, and personalized engagement. In the meantime, if you’re not already, follow us on LinkedIn below, and we’ll see you here in 2026!

Follow LuxSci on LinkedIn

HIPAA compliant email

LuxSci Welcomes Angel Mazariegos as Head of Finance

LuxSci, a leader in secure healthcare communications and HIPAA compliant email, is pleased to announce the appointment of Angel Marie Mazariegos as the company’s new Head of Finance. With over 25 years of experience in financial management, accounting, and human resources, Angel will play a central role in advancing LuxSci’s operational excellence and supporting the company’s rapid growth in 2026 and beyond.

Angel brings a wealth of expertise to LuxSci, having held senior leadership positions at organizations focused on financial services, language and access services for healthcare, and human resources. In these roles, Angel has led multi-department Finance and HR teams, spearheading critical initiatives, including ERP implementations, streamlined employee onboarding, and financial process optimization.

In her role at LuxSci, Angel will oversee all aspects of the company’s finance operations, including budgeting, forecasting and reporting. Additionally, Angel will manage the company’s HR function, ensuring that LuxSci continues to foster a strong, people-driven culture based on its Secure, Trust, Responsible and Smart company values.

“Angel’s blend of financial and HR leadership makes her an invaluable addition to the LuxSci executive team and a real asset for our people,” said Mark Leonard, CEO of LuxSci. “We look forward to working with Angel to build the high-performing teams that will be critical to our future growth and serving the evolving needs of our customers.”

Angel holds dual MBA degrees in Accounting and Human Resource Management from Cappella University, as well as dual BS degrees in Business Administration (Accounting and CIS Business Systems) from California State University, Los Angeles.

“I am honored to join the LuxSci team at such an exciting time for the company,” said Mazariegos. “I look forward to working with the team and helping build on LuxSci’s reputation for excellence and reliability in secure healthcare communications.”

HIPAA Compliant Email

LuxSci Shines in G2 Winter 2026 Reports, Underscoring Commitment to Product Leadership and Trusted Relationships

We’re pleased to announce that LuxSci has been recognized for excellence and leadership for HIPAA compliant email and messaging in the just-released G2 Winter 2026 Reports!

Based on verified customer reviews, LuxSci earned 20 G2 badges as part of the most recent G2 reports, including top honors such as Grid Leader, Highest User Adoption, Best Support, and Best Estimated ROI.

This recognition further validates what we’ve always believed: our customers don’t just choose a great product — they choose a great partner. At LuxSci, we build long-term, trusted relationships with our customers, anchored in product reliability, industry-leading email deliverability and performance, and the best customer support in the business.

Why G2 Matters

G2 is a globally trusted peer‑review platform that aggregates verified user feedback and real‑world usage data to rank software and service providers. G2’s seasonal reports like the Winter 2026 editions shine a spotlight on latest tools and vendors that deliver consistent value and satisfaction to real customers.

Earning 20 badges this quarter signals a strong vote of confidence from our customers and community, helping affirm that LuxSci is a leading, highly adopted secure email solutions provider.

What We Earned in Winter 2026

Among the 20 badges awarded to LuxSci across Email Security, Email Encryption, Email Gateway and HIPAA Compliant Messaging are:

  • Grid Leader
  • Highest User
  • Best Support
  • Best Estimated ROI

This broad range of accolades spanning leadership, adoption, support and return on investment underscores the reliability of our solutions and the trust our customers place in us.

Awards Reflect Our Commitment to Customer Success

Reliable. Winning Grid Leader and Highest User Adoption demonstrates that thousands of users are depending on LuxSci, securely delivering emails to today’s most popular platforms, including Gmail, Apple Mail, Yahoo Mail and AOL, to name a few.

Proven. With Best Estimated ROI, customers are saying that LuxSci delivers tangible results, whether in secure email delivery, regulatory compliance, or operational efficiency.

Long‑Term Trust. Best Support is perhaps the most telling because for us, success isn’t just about features, it’s about being there for our customers every step of the way.

Thank you to all of our customers. We remain committed to your success — today and in the future.

Want to learn more about LuxSci? Reach out and connect with us today!

HIPAA Compliant Email

Here’s What HIPAA Compliant Email Salespeople Don’t Tell You

With email security threats continuously increasing in number and sophistication, as well as healthcare companies requiring secure solutions to communicate with patients and customers, the need for HIPAA compliant email solutions has never been greater. 

However, when looking for the right secure email services provider (ESP), healthcare organizations run the risk of making inaccurate assumptions about HIPAA compliance via what they learn from prospective vendors. This is due to the tendency for sales materials for HIPAA compliant email services, such as web pages or promotional videos, to highlight the strengths of the platform, while downplaying a healthcare company’s own role and responsibilities in securing protected health information (PHI). 

With this firmly in mind, here are six key things that HIPAA compliant email salespeople don’t tell you about securing communications and achieving compliance. 

1. The Shared Responsibility Model

Firstly, HIPAA compliant email salespeople are unlikely to emphasize the idea of shared responsibility when it comes to data security. This is the idea that two entities that share access to data, e.g., a healthcare company and their ESP, have a shared responsibility to preserve the privacy of that data.

In reality, most sales pitches explain the benefits and features of the solution, as opposed to stressing that compliance truly depends on how it’s configured and used. Now, that’s not to say that a salesperson is trying to hide this fact, as they’ll probably allude to training and configuration requirements. But, they’ll be less likely to make light of this and, more broadly, how shared responsibility factors into compliance.

2. A BAA Doesn’t Automatically Make You HIPAA Compliant

A business associate agreement (BAA) is essential for HIPAA compliance, but signing one doesn’t automatically make you compliant. Your organization still has to use the email delivery solution in a way that aligns with HIPAA regulations, which involves proper configuration, training, oversight, and reporting.

The misconception among some healthcare companies that a BAA equals compliance may be perpetuated by the term “HIPAA compliant email services provider”.  This could give some the impression that the vendor is fully HIPAA compliant and, subsequently, in signing a BAA with them, the use of their services is fully compliant.

But, it’s not that simple.

Simply signing a BAA obscures the real effort involved in achieving compliance. There’s no official HIPAA seal of approval, and HIPAA compliant means that the solution is capable of being configured for compliant use, which is a shared responsibility. HIPAA compliant email salespeople are unlikely to volunteer this nuance, especially if their email solution requires considerable configuration or has a steep learning curve to use it securely.

3. Not All Solutions or Features Are HIPAA Compliant

Another key detail often underplayed by vendor sales materials of HIPAA compliant email solutions is that some of their features, or even entire services, aren’t covered by their BAAs, so they can’t be used to handle PHI. 

These tools are referred to as “out of scope” and may include tools capable of integration with the email service, such as analytics or AI capabilities, but they don’t possess the cyber risk mitigation measures that align with HIPAA regulations. Perhaps the main reason for this is that many mass-market email delivery solutions, such as Microsoft 365 or Google Workspace, are designed for companies across all sectors. Consequently, while they can be HIPAA compliant, they weren’t developed from the ground up with the stringent regulatory demands of the healthcare industry in mind.

4. Solutions Are Not HIPAA Compliant “Out of The Box”

HIPAA compliant email salespeople may suggest that compliance is built into their platform, and healthcare organizations can use it to transmit PHI straight away, but this isn’t the case. Healthcare companies must still configure the email platform accordingly, as per the security requirements determined by their risk assessment, e.g., applying the right level of encryption. 

Also, if the email service is difficult to configure for HIPAA compliance or if the vendor’s configuration documentation lacks detail, that presents another obstacle to its compliant use. 

In addition to configuration, healthcare companies also have to implement access management controls and policies, establishing the extent to which each employee can access PHI in respect to their roles and responsibilities. From there, they will have to train their workforce on how to use the HIPAA compliant email solution securely, which may include those tools that fall outside the scope of your BAA with the vendor, and must not be used for the disclosure of patient data.

5. Essential Security Features Cost Extra 

Another more egregious version of an ESP not being HIPAA compliant out of the box is having features required for compliance, such as encryption or audit logging, as premium add-ons and not included in the solution’s base pricing. 

A vendor’s sales materials for its email service might list the necessary safeguards, but underemphasize the fact that only some versions of their platform are truly HIPAA compliant. Consequently, healthcare companies must confirm that the features required for HIPAA compliant email communications are included in the plan they’re purchasing. 

6. The Importance of Staff Training on HIPAA

HIPAA compliant email salespeople are often remiss in stressing the need for additional workforce training alongside the deployment of their platform. A healthcare company’s employees must be trained on how to securely use the email client, how to ID potential threats, and best practices for including PHI in email communications, as well as the regulations tied to HIPAA and data security.

This includes educating users on the differences between regular and secure email, and what they must do to safeguard patient and customer data. Fortunately, secure email solutions from providers like LuxSci enable automated email encryption, and users do not need to take any additional actions to ensure encryption when sending emails.

Additionally, in some cases, employees will need to be trained on which tools or features do not align with HIPAA guidelines and must not be used to process PHI.

LuxSci: Fully HIPAA Compliant – No Hidden Surprises

LuxSci specializes in solutions that enable companies to carry out secure, personalized, and HIPAA compliant email communications and campaigns. With more than 20 years of experience and billions of emails sent for companies including Athenahealth, 1 800 Contacts, Lucerna Health and Rotech Healthcare, we’ve acquired invaluable experience in helping healthcare organizations enhance their engagement efforts, all while adhering to HIPAA regulations. In addition, LuxSci’s secure high-volume and marketing email solutions feature HIPAA-required security controls, including encryption, audit logging, and multi-factor authentication (MFA) by default, not as optional, hidden extras.

Contact us today to learn more about how LuxSci’s secure email solutions can help increase the ROI on your patient and customer outreach efforts, while safeguarding PHI in line with HIPAA requirements.

You Might Also Like

Patient Engagement Technology

What Is Healthcare Marketing Management For Medical Practices?

Healthcare marketing management coordinates promotional activities, patient acquisition strategies, and compliance oversight to help medical practices attract new patients while adhering to HIPAA privacy regulations and professional advertising standards. Medical facilities require healthcare marketing management to oversee digital campaigns, traditional advertising efforts, community outreach initiatives, and patient retention programs across multiple promotional channels while ensuring all activities meet regulatory requirements and produce measurable patient acquisition outcomes.

So, why do some medical practices thrive while others struggle with patient acquisition? The answer is effective healthcare marketing management. Without dedicated oversight, promotional efforts scatter in different directions, budgets vanish without measurable results, and compliance violations create expensive legal problems.

Patient Demographics in Healthcare Marketing Management

Understanding your target audience begins with data analysis. Age groups, geographic boundaries, insurance coverage patterns, and prevalent medical conditions within your service area shape every promotional decision. Healthcare marketing management teams dive deep into existing patient records, uncovering referral patterns that reveal which sources generate the highest value patients.

Competitive intelligence gathering takes multiple forms. Some practices hire mystery shoppers to evaluate competitor services. Others analyze online reviews, pricing structures, and promotional messaging. Smart management uses this intelligence to identify market gaps rather than copying unsuccessful strategies from neighboring practices.

Budget Allocation in Healthcare Marketing Management

The amount practices should spend on digital versus traditional advertising depends on patient demographics, local market conditions, and practice specialties. Younger patients respond better to social media campaigns, while older demographics prefer direct mail and radio advertising. Healthcare marketing management level these preferences against available budgets.

Compliance costs eat into promotional budgets more than most practices realize. Legal reviews for promotional materials, staff training on privacy regulations, and business associate agreements with vendors all require financial investment. Practices that skip these expenses face much larger costs when regulatory violations occur.

Digital Campaigns & Healthcare Marketing Management

Your practice website is the digital front door for new patients. But websites alone don’t generate appointments. Search engine optimization, pay-per-click advertising, social media engagement, and content marketing must work together seamlessly. Healthcare marketing management orchestrates these elements to create comprehensive digital presence.

Content creation poses challenges in healthcare. Educational articles about medical conditions can attract patients searching for information. However, any content featuring patient stories or treatment outcomes requires careful authorization management. One unauthorized patient photo or testimonial can trigger costly HIPAA violations.

Compliance Integration Protects Promotional Investments

HIPAA violations from promotional activities result in average penalties exceeding $100,000 per incident. Healthcare marketing management prevents these disasters through systematic compliance integration. Every promotional campaign, vendor relationship, and content piece undergoes privacy review before launch. Documentation proves compliance during regulatory audits. Smart practices maintain detailed records of patient authorizations, vendor agreements, and staff training completion. These records protect practices when investigators examine promotional activities for potential privacy violations.

Community Outreach to Build Healthcare Marketing Management

Local health fairs provide face-to-face patient interaction opportunities that digital campaigns cannot replicate. However, these events require careful planning to maximize return on investment while protecting patient privacy. Healthcare marketing management coordinates booth staffing, educational materials, and follow-up procedures to convert event contacts into scheduled appointments. Referral relationships with other healthcare providers generate consistent new patient flows. But referral agreements must comply with anti-kickback laws and fraud prevention regulations. Healthcare marketing management navigates these legal requirements while building mutually beneficial professional relationships.

Performance Analytics Guide Healthcare Marketing Management Optimization

Which promotional channels generate the most valuable patients? Website analytics, call tracking systems, and appointment scheduling data provide answers. Healthcare marketing management uses this information to optimize budget allocation and eliminate wasteful spending on ineffective promotional channels. Patient lifetime value calculations reveal which acquisition strategies produce the best long-term results. Some promotional channels attract patients who schedule one appointment and never return. Others generate loyal patients who refer family members and friends.

Implementation Coordination

Successful promotional campaigns require precise timing and resource coordination. Campaign launches, content publication schedules, and community event participation must align with practice capacity and seasonal patient demand patterns. Healthcare marketing management prevents promotional success from overwhelming practice operations. Seasonal planning creates promotional opportunities that many practices miss. Flu vaccination campaigns, summer sports injury prevention, and back-to-school wellness checks all present timely promotional angles. Healthcare marketing management preparation captures these opportunities while competitors scramble to react.

HIPAA compliant email services

How to Send HIPAA Compliant Emails

Learning how to send HIPAA compliant emails requires understanding encryption standards, authentication protocols, and business associate agreements that protect patient health information during electronic transmission. Healthcare providers must implement safeguards when communicating electronically about patients, ensuring that all email communications meet HIPAA Security Rule requirements for protecting electronic protected health information. Standard consumer email services like Gmail or Outlook cannot guarantee the security measures necessary for healthcare communications, making specialized secure email platforms essential for organizations handling patient data.

Encryption Requirements for Healthcare Email

End-to-end encryption is the foundation for secure healthcare email communications, protecting patient information from unauthorized access during transmission and storage. Healthcare organizations learning how to send HIPAA compliant emails need email systems that encrypt messages using Advanced Encryption Standard (AES) 256-bit encryption or equivalent security protocols before sending communications across public internet networks. The encryption process must protect both the email content and any attachments containing protected health information, ensuring that even if messages are intercepted, the patient data remains unreadable to unauthorized parties.

Message encryption should activate automatically for all healthcare communications rather than requiring manual activation by individual users. This automatic encryption prevents inadvertent transmission of unprotected patient information when staff members forget to activate security features manually. Healthcare email systems also need secure key management protocols that protect encryption keys from unauthorized access while ensuring that legitimate recipients can decrypt and read necessary patient communications.

Transport layer security protocols provide protection during email transmission, creating secure connections between email servers and preventing message interception during delivery. Healthcare organizations should verify that their email providers use TLS 1.2 or higher encryption standards for all message transmissions. Certificate-based authentication adds another security layer by verifying the identity of email recipients before allowing message delivery, preventing misdirected emails containing patient information from reaching incorrect recipients.

Authentication and Access Controls

Multi-factor authentication is a security requirement for healthcare email systems, ensuring that only authorized users can access accounts containing patient communications. Healthcare staff need to provide at least two forms of identification before accessing secure email accounts, combining passwords with mobile device codes, biometric verification, or hardware security tokens. This authentication process protects against unauthorized account access even if passwords are compromised through data breaches or social engineering attacks.

User access controls must reflect the principle of least privilege, granting healthcare staff access only to email communications necessary for their job functions. Physicians need different access levels compared to administrative staff, with role-based permissions preventing unauthorized viewing of patient information outside individual staff members’ care responsibilities. Email systems should maintain detailed audit logs tracking who accesses patient communications, when access occurs, and what actions users perform with protected health information.

Automatic session timeouts provide security by logging users out of email systems after predetermined periods of inactivity. These timeouts prevent unauthorized access when staff members step away from their workstations without properly securing their accounts. Password complexity requirements and password updates strengthen authentication security, though healthcare organizations must balance security requirements with usability to prevent staff from circumventing security measures due to overly complex requirements.

Session management protocols should track concurrent login attempts and prevent multiple simultaneous access sessions for individual user accounts. This monitoring helps detect potential account compromises when unusual access patterns occur, such as logins from multiple geographic locations within short time periods. Email systems need clear protocols for immediately revoking access when staff members leave the organization or when security breaches are detected.

Business Associate Agreements and Compliance

Healthcare organizations must establish comprehensive business associate agreements with their email service providers before transmitting any patient information through electronic communications. These legal agreements define the responsibilities and obligations of both parties regarding protected health information, specifying how the email provider will protect patient data, what uses and disclosures are permitted, and how security incidents will be reported to the healthcare organization. The agreements must cover encryption requirements, data retention policies, and procedures for returning or destroying patient information when business relationships end.

Vendor due diligence processes help healthcare organizations evaluate email service providers to ensure they understand how to send HIPAA compliant emails while meeting all regulatory requirements. This evaluation includes reviewing security certifications, examining data center facilities and security controls, and verifying the provider’s experience with healthcare industry regulations. Healthcare organizations should require proof of cyber liability insurance, incident response capabilities, and security auditing from their email service providers.

Compliance monitoring requires healthcare organizations to conduct periodic assessments of their email security measures and vendor performance. These assessments verify that encryption standards remain current, access controls function properly, and audit logging captures all necessary security events. Healthcare organizations must maintain documentation demonstrating their compliance efforts, including training records, security policies, and incident response procedures related to email communications.

Risk assessments help identify potential vulnerabilities in email security systems and guide updates to security measures as threats evolve. Healthcare organizations should review their email compliance programs annually or whenever changes occur to their operations, technology systems, or regulatory requirements. Documentation of these assessments provides evidence of due diligence in protecting patient information during regulatory audits or security investigations.

Implementation Best Practices

Staff training programs must educate healthcare workers about proper email security practices and when it is appropriate to include patient information in electronic communications. Healthcare staff learning how to send HIPAA compliant emails need clear guidelines about what patient information can be discussed via email versus what requires telephone calls or in-person meetings. Training should cover how to recognize secure email platforms, how to verify recipient identities before sending patient information, and what types of patient data require protection beyond standard email security measures.

Email policy development requires healthcare organizations to establish clear protocols governing patient communication via electronic means. These policies should specify which staff members can send patient information via email, what approval processes are required for sharing sensitive patient data, and how to handle requests from patients who want to receive their health information via email. Policies must also cover how to respond when staff accidentally send patient information to incorrect recipients or when security breaches involving email communications occur.

Testing procedures should verify that email security measures function correctly before implementing systems organization-wide. Healthcare organizations learning how to send HIPAA compliant emails need to conduct penetration testing of their email security systems, verify that encryption activates properly, and confirm that access controls prevent unauthorized viewing of patient information. Testing schedules help identify security vulnerabilities before they can be exploited by malicious actors.

Incident response planning prepares healthcare organizations to handle security breaches involving email communications containing patient information. Response plans should include procedures for containing security incidents, assessing the scope of potential patient information exposure, and notifying affected patients and regulatory authorities when breaches occur. Healthcare organizations must practice their incident response procedures to ensure staff can respond effectively during actual security emergencies.

Patient Communication Considerations

Patient consent requirements vary depending on the type of health information being transmitted and the communication method requested by patients. While healthcare providers can generally communicate with patients about treatment, payment, and healthcare operations without authorization, organizations should obtain written consent before sending detailed medical information via email. Consent forms should explain the security measures in place while acknowledging that email communication carries inherent privacy risks despite protective measures.

Email content guidelines help healthcare staff understand what patient information is appropriate for electronic transmission versus what requires more secure communication methods. Those mastering how to send HIPAA compliant emails recognize that laboratory results, medication changes, andappointment reminders may be suitable for secure email communication, while detailed psychiatric notes, HIV test results, or substance abuse treatment information may require protections or alternative communication methods. Staff need clear decision-making frameworks for evaluating the appropriateness of email communication for different types of patient information.

Alternative communication methods should remain available for patients who prefer not to receive health information via email or who lack secure email access. Understanding how to send HIPAA compliant emails includes recognizing when alternative methods like telephone calls, patient portals, and postal mail provide more appropriate secure alternatives for patient communication while ensuring that lack of email access does not create barriers to necessary healthcare information sharing. Healthcare organizations must accommodate patient preferences while maintaining appropriate security measures for all communication methods.

AI-based Email Security Threats

How to Avoid AI-Based Email Security Threats

Artificial intelligence (AI) has been the hottest topic in technology for the past few years now, with a focus on how it’s transforming business and the way we work. While we’d seen glimpses of AI’s capabilities before, the release of ChatGPT (containing OpenAI’s groundbreaking GPT-3.5 AI model) put the technology’s limitless potential on full display. Soon, stakeholders in every industry looked to find ways to integrate AI into their organizations, so they could harness its huge productivity and efficiency benefits.

The problem? Hackers and bad actors are using AI too, and it’s only strengthening their ability to carry out data breaches, including AI-based email security threats. 

While AI brings considerable advantages to all types of businesses, unfortunately, its vast capabilities can be used for malicious purposes too. With their unparalleled ability to process data and generate content, cybercriminals can use a variety of AI tools to make their attacks more potent, increasing their potential to get past even the most secure safeguards. 

With all this in mind, this post discusses how AI is helping cyber criminals massively scale their efforts and carry out more sophisticated, widespread attacks. We’ll explore how malicious actors are harnessing AI tools to make AI-based email cyber attacks more personalized, potent, and harmful, and cover three of the most common threats to email security that are being made significantly more dangerous with AI. This includes phishing, business email compromise (BEC) attacks, and malware. We’ll also offer strategic insights on how healthcare organizations can best mitigate AI-enhanced email threats and continue to safeguard the electronic protected health information (ePHI) under their care. 

How Does AI Increase Threats To Email Security?

AI’s effect on email security threats warrants particular concern because it enhances them in three ways: by making email-focused attacks more scalable, sophisticated, and difficult to detect.

Scalability 

First and foremost, AI tools allow cybercriminals to scale effortlessly, enabling them to achieve exponentially more in less time, with few additional resources, if any at all. 

The most obvious example of the scalable capabilities of generative AI involves systems that can create new content from simple instructions, or prompts. In particular, large language models (LLMs), such as those found in widely used AI applications like ChatGPT, allow malicious actors to rapidly generate phishing email templates and similar content that can be used in social engineering attacks, with a level of accuracy in writing and grammar not seen before. Now, work that previously would take email cybercriminals hours can be achieved in mere seconds, with the ability to make near-instant improvements and produce countless variations.   

Similarly, should a social engineering campaign yield results, i.e., getting a potential victim to engage, malicious actors can automate the interaction through AI-powered chatbots, which are capable of extended conversations via email. This increases the risk of a cybercriminal successfully fooling an employee at a healthcare organization to grant access to sensitive patient data or reveal their login credentials so they can breach their company’s email system. 

Additionally, AI allows cybercriminals to scale their efforts by automating aspects of their actions, and gathering information about a victim, i.e., a healthcare organization before launching an attack. AI tools also can scan email systems, metadata, and publicly available information on the internet to identify vulnerable targets, and their respective security flaws. They can then use this information to pinpoint and prioritize high-value victims for future cyber attacks.

Sophistication

In addition to facilitating larger and more frequent cyber attacks, AI systems allow malicious actors to make them more convincing. As mentioned above, generative AI allows cybercriminals to create content quickly, and craft higher-quality content than they’d be capable of through their own manual efforts. 

Again, using phishing as an example, AI can refine phishing emails by eliminating grammatical errors and successfully mimicking distinct communication styles to make them increasingly indistinguishable from legitimate emails. Cybercriminals are also using AI to make their fraudulent communications more context-aware, referencing recent conversations or company events and incorporating data from a variety of sources, such as social media, to increase their perceived legitimacy.  

In the case of another common email attack vector, malware, AI can be used to create constantly evolving malware that can be attached to emails. This creates distinct versions of malware that are more difficult for anti-malware tools to stop.

More Difficult to Detect

This brings us to the third way in which AI tools enhance email threats: by making them harder to detect and helping them evade traditional security measures. 

AI-powered email threats can adapt to a healthcare organization’s cybersecurity measures, observing how its defenses, such as spam filters, flag and block malicious activity before automatically adjusting its behavior until it successfully bypasses them. 

After breaching a healthcare organization’s network, AI offers cybercriminals several new and enhanced capabilities that help them expedite the achievement of their malicious objectives, while making detection more difficult. 

These include:  

  • Content Scanning: AI tools can scan emails, both incoming and outgoing, in real-time to identify patterns pertaining to sensitive data. This allows malicious actors to identify target data in less time, making them more efficient and capable of extracting greater amounts of PHI.  
  • Context-Aware Data Extraction: similarly, AI can differentiate between regular text and sensitive data by recognizing specific formats (e.g., medical record numbers, insurance details, social security numbers, etc.)
  • Stealthy Data Exfiltration: analyzing and extracting PHI, login credentials, and other sensitive data from emails, while blending into normal network traffic. 
  • Distributed Exfiltration: instead of transferring large amounts of data at once, which is likely to trigger cyber defenses, hackers can use AI systems that slowly exfiltrate PHI in smaller payloads over time, better blending into regular network activity.

AI and Phishing

Phishing attacks involve malicious actors impersonating legitimate companies, or employees of a company, to trick victims into revealing sensitive patient data. Typical phishing attack campaigns rely on volume and trial and error. The more messages sent out by cybercriminals, the greater the chance of snaring a victim. Unfortunately, AI applications allow malicious actors to raise the efficacy of their phishing attacks in several ways.

First, AI allows scammers to craft higher-quality messaging. One of the limitations of phishing emails for healthcare companies is that they’re often easy to identify, since they are replete with mis-spelled words, poor grammar, and bad formatting. AI allows malicious actors to overcome these inadequacies and create more convincing messages that are more likely to fool healthcare employees.  

On a similar note, because healthcare is a critical industry, it’s consistently under threat from cybercriminals, which are also known as advanced persistent threats (APTs) or even cyber terrorists. By definition, such malicious actors often reside outside the US and English isn’t their first language. 

While, in the past, this may have been obvious, AI now provides machine translation capabilities, allowing cybercriminals to write messages in their native language, translating them to English, and refining them accordingly. Consequently,  scammers can craft emails with fewer tell-tale signs that healthcare organizations can train their employees to recognize. 

Additionally, as alluded to earlier, AI models can produce countless variations of phishing messages, significantly streamlining the trial-and-error aspect of phishing campaigns and allowing scammers to discover which messaging works best in far less time. 

Lastly, as well as enhancing the efficacy of conventional phishing attacks, AI helps improve spear phishing campaigns, a type of fraudulent email that targets a particular organization or employee who works there, as opposed to the indiscriminate, “scatter” approach of regular phishing.

While, traditionally, spear phishing requires a lot of research, AI can scrape data from a variety of sources, such as social media, forums, and other web pages, to automate a lot of this manual effort. This then allows cybercriminals to carry out the reconnaissance required for successful attacks faster and more effectively, increasing their frequency and, subsequently, their rate of success. 

AI and Business Email Compromise (BEC) Attacks

A business email compromise (BEC) is a type of targeted email attack that involves cybercriminals gaining access to or spoofing (i.e., copying) a legitimate email account to manipulate those who trust its owner into sharing sensitive data or executing fraudulent transactions. BEC attacks can be highly effective and, therefore, damaging to healthcare companies, but they typically require extensive research on the target organization to be carried out successfully. However, as with spear phishing, AI tools can drastically reduce the time it takes to identify potential targets and pinpoint possible attack vectors. 

For a start, cybercriminals can use AI to undertake reconnaissance tasks in a fraction of the time required previously. This includes identifying target companies and employees whose email addresses they’d like to compromise, generating lists of vendors that do business with said organization, and even researching specific individuals who are likely to interact with the target.  

Once a target is acquired, malicious actors can use AI tools in a number of terrifying ways to create more convincing messaging. By analyzing existing emails, AI solutions can quickly mimic the writing style of the owner of the compromised account, giving them a better chance of fooling the people they interact with. 

By the same token, they can use information gleaned from past emails to better contextualize fraudulent messages, i.e., adding particular information to make subsequent requests more plausible. For example, requesting data or login credentials in relation to a new project or recently launched initiative. 

Taking this a step further, cybercriminals could supplement a BEC attack with audio or video deepfakes created by AI to further convince victims of their legitimacy. Scammers can use audio deepfakes to leave voicemails or, if being especially brazen, conduct entire phone conversations to make their identity theft especially compelling.

Meanwhile, scammers can create video deepfakes that relay special instructions, such as transferring money, and attach them to emails. Believing the request came from a legitimate source, there’s a chance employees will comply with the request, boosting the efficacy of the BEC attack in the process. Furthermore, the less familiar an employee is with attacks of this kind, the more likely they are to fall victim to them.   

In short, AI models make it easier to carry out BEC attacks, which makes it all the more likely for cybercriminals to attempt them.

AI and Malware 

Malware refers to any kind of malicious software (hence, “mal(icous) (soft)ware”), such as viruses, Trojan horses, spyware, and ransomware, all of which can be enhanced by AI in several ways.

Most notable is AI’s effect on polymorphic malware, which has the ability to constantly evolve to bypass email security measures, making malicious attachments harder to detect. Malware, as with any piece of software, carries a unique digital signature that can be used to identify it and confirm its legitimacy. Anti-malware solutions traditionally use these digital signatures to flag instances of malware, but the signature of polymorphic malware changes as it evolves, allowing it to slip past email security measures. 

While polymorphic malware isn’t new, and previously relied on pre-programmed techniques such as encryption and code obfuscation, AI technology has made it far more sophisticated and difficult to detect. Now, AI-powered polymorphic malware can evolve in real-time, adapting in response to the defense measures it encounters. 

AI can also be used to discover Zero Day exploits, i.e., previously unknown security flaws, within email and network systems in less time. Malicious actors can employ AI-driven scanning tools to uncover vulnerabilities unknown to the software vendor at the time of its release and exploit them before they have the opportunity to release a patch.

How To Mitigate AI-Based Email Security Threats

While AI can be used to increase the effectiveness of email attacks, fortunately, the fundamentals of mitigating email threats remains the same; organizations must be more vigilant and diligent in following email security best practices and staying on top of the latest threats and tools used by cybercriminals. 

Let’s explore some of the key strategies for best mitigating AI-based email threats and better safeguarding the ePHI within your organization.

  • Educate Your Employees: ensure your employees are aware of how AI can enhance existing email threats. More importantly, demonstrate what this looks like in a real-world setting, showing examples of AI-generated phishing and BEC emails compared to traditional messages, what a convincing deepfake looks and sounds like, instances of polymorphic malware, and so on.

    Additionally, conduct regular simulations, involving AI-enhanced phishing, BEC attacks, etc., as part of your employees’ cyber threat awareness training. This gives them first-hand experience in identifying AI-driven email threats, so they’re not caught off-guard when they encounter them in real life. You can schedule these simulations to occur every few months, so your organization remains up-to-date on the latest email threat intelligence.
     
  • Enforce Strong Email Authentication Protocols: ensure that all incoming emails are authenticated using the following:
    • Sender Policy Framework (SPF): verifies that emails are sent from a domain’s authorized servers, helping to prevent email spoofing. 
    • DomainKeys Identified Mail (DKIM): preserves the integrity of the message’s contents by adding a cryptographic signature, mitigating compromise during transit, e.g., stealthy or distributed data exfiltration. 
    • Domain-based Message Authentication, Reporting & Conformance (DMARC): enforces email authentication policies, helping organizations detect and block unauthorized emails that fail SPF or DKIM checks.

By verifying sender legitimacy, preventing email spoofing, and blocking fraudulent messages, these authentication protocols are key defenses against AI-enhanced phishing and business email compromise (BEC) attacks.

  • Access Control: while AI increases the risk of PHI exposure and login credential compromise, the level of access that a compromised or negligent employee has to patient data is another problem entirely. Subsequently, data breaches can be mitigated by ensuring that employees only have access to the minimum amount of data required for their job roles, i.e. role-based access control (RBAC). This reduces the potential impact of a given data breach, as it lowers the chances that a malicious actor can extract large amounts of data from a sole employee.
  • Implement Multi-Factor Authentication (MFA): MFA provides an extra layer of protection by requiring users to verify their identity in multiple ways. So, even in the event that a cybercriminal gets ahold of an employee’s login credentials, they still won’t have sufficient means to prove they are who they claim to be.
  • Establish Incident Response and Recovery Plans: unfortunately, by making them more scalable, sophisticated, and harder to detect, AI increases the inevitability of security breaches. This makes it more crucial than ever to develop and maintain a comprehensive incident response plan that includes strategies for responding to AI-enhanced email security threats.

    By establishing clear protocols regarding detection, reporting, containment, and recovery, your organization can effectively mitigate, or at least minimize, the impact of email-based cyber attacks enhanced by AI. Your incident response plan should be a key aspect of your employee cyber awareness training, so your workforce knows what to do in the event of a security incident. 

Get Your Copy of LuxSci’s 2025 Email Cyber Threat Readiness Report

To learn more about healthcare’s ever-evolving email threat landscape and how to best ensure the security and privacy of your sensitive data, download your copy of LuxSci’s 2025 Email Cyber Threat Readiness Report. 

You’ll discover:

  • The latest threats to email security in 2025, including AI-based attacks
  • The most effective strategies for strengthening your email security posture
  • The upcoming changes to the HIPAA Security Rule and how it will impact healthcare organizations.

Grab your copy of the report here and start increasing your company’s email cyber threat readiness today.

HIPAA compliant marketing automation

How Do I Make My Computer HIPAA Compliant?

Making a computer HIPAA compliant involves implementing security measures that protect electronic protected health information according to HIPAA regulations. This includes encryption, access controls, automatic logoff, audit controls, and malware protection. No single setting makes a computer HIPAA compliant, as becoming HIPAA compliant requires a combination of hardware controls, software configurations, and appropriate user behavior to protect patient information from unauthorized access or disclosure.

Hardware Security Considerations

Computer hardware plays a role in HIPAA compliance through physical protection measures. Laptop privacy screens prevent visual access to patient information when working in public spaces. Cable locks secure devices to prevent theft when left unattended. Hard drive encryption provides protection if devices are lost or stolen. For desktop computers, positioning screens away from public view helps prevent incidental disclosure of patient information. Physical access controls limit who can use the device, particularly in shared clinical environments. These hardware elements work with software protections to create a more secure environment for patient data.

Operating System Protections

Modern operating systems include several built-in security features that support HIPAA compliance when properly configured. Automatic operating system updates ensure security patches are applied promptly to address vulnerabilities. User account controls create separate profiles for different staff members with appropriate permission levels. Disk encryption protects data if computers are lost or stolen. Inactivity timeouts automatically lock screens after periods without user input. Firewall configurations block unauthorized network access attempts. These operating system settings form the foundation of a HIPAA compliant computer environment.

Data Encryption Implementation

HIPAA requires encryption for protected health information, making this a fundamental element of computer compliance. Full-disk encryption protects all data stored on computer hard drives. File-level encryption allows protection of individual documents containing sensitive information. Email encryption secures patient information sent through electronic messages. Virtual Private Networks (VPNs) encrypt data transmitted over public networks. Proper encryption key management ensures authorized users maintain access while protecting against unauthorized disclosure. Many healthcare organizations establish encryption standards for all devices handling patient information.

Access Control Mechanisms

Restricting who can use computers and access patient information represents a central aspect of being HIPAA compliant. Strong password policies require complex passwords that change regularly. Multi-factor authentication adds additional verification beyond passwords. Automatic logoff terminates sessions after periods of inactivity. Role-based access limits information viewing based on job responsibilities. Session monitoring records login attempts and system usage patterns. User provisioning procedures ensure access rights change when staff roles change. These access controls help prevent both unauthorized external access and inappropriate internal information viewing.

Malware Protection Systems

Healthcare computers need robust protection against malicious software that could compromise patient data. Antivirus software scans for known threats and suspicious behaviors. Anti-malware tools provide additional protection against ransomware and other evolving threats. Email filtering helps prevent phishing attempts targeting healthcare staff. Web filtering blocks access to dangerous websites that might install malware. Application controls prevent unauthorized software installation. Regular malware definition updates ensure protection against new threats. These protections work together to defend against various attack vectors that could compromise patient information.

Documentation and Monitoring

HIPAA compliance requires ongoing monitoring and documentation of computer security measures. Activity logs record who accessed what information and when. Audit tools analyze these logs for unusual patterns that might indicate security problems. Vulnerability scanning identifies potential security weaknesses before they lead to breaches. Incident response procedures outline steps for addressing potential security issues. Security assessment documentation demonstrates compliance efforts during audits or reviews. These monitoring practices help healthcare organizations maintain compliance while providing evidence of their security efforts when questions arise.