LuxSci

Enhanced Security: AES-256 Encryption for SSL and TLS

AES-256 Maximal Security

AES-256 EncryptionSSL and TLS play critical roles in securing data transmission over the internet, and AES-256 is integral in their most secure configurations. The original standard was known as Secure Sockets Layer (SSL). Although it was replaced by Transport Layer Security (TLS), many in the industry still refer to TLS by its predecessor’s acronym. While TLS can be relied on for securing information at a high level—such as US Government TOP SECRET data—improper or outdated implementations of the standard may not provide much security.

Variations in which cipher is used in TLS impact how secure TLS ultimately is. Some ciphers are fast but insecure, while others are slower, require a greater amount of computational resources, and can provide a higher degree of security. Weaker ciphers—such as the early export-grade ciphers—still exist, but they should no longer be used.

The Advanced Encryption Standard (AES) is an encryption specification that succeeded the Data Encryption Standard (DES). AES was standardized in 2001 after a five-year review and is currently one of the most popular algorithms used in symmetric-key cryptography. It is often seen as the gold standard symmetric-key encryption technique, with many security-conscious organizations requiring employees to use AES-256 for all communications. It is also used prominently in TLS.

AES has been available in most cryptographic libraries for a long time. It became available in OpenSSL in 2002 with v0.9.7. OpenSSL is the foundation of most SSL services in UNIX and Linux environments, such as that used by LuxSci. GPG, the open source implementation of PGP, also includes an AES-256 option.

This article discusses AES, its role in TLS, which web browsers and email programs support it, and how you can ensure that you only use 256-bit AES encryption for communications that require a high level of security.

How secure are AES-256 and AES-128?

AES is Federal Information Processing Standard (FIPS) certified, and there are currently no known non-brute force attacks that work directly against AES. However, there are some side-channel timing attacks on the processing of AES. These are not feasible over a network environment and don’t apply to SSL in general. Because of this, AES is considered robust enough to protect secret government information:

The design and strength of all key lengths of the AES algorithm (i.e., 128, 192 and 256) are sufficient to protect classified information up to the SECRET level. TOP SECRET information will require use of either the 192 or 256 key lengths. The implementation of AES in products intended to protect national security systems and/or information must be reviewed and certified by NSA prior to their acquisition and use.”

Out of the three different key lengths, AES-256 offers a higher degree of security than the 128-bit and 192-bit versions of the standard.

AES-256 Maximal Security

The Beast Attack and TLS-secured websites

When TLS is used to protect website traffic (as opposed to IMAP, SMTP, encryption of files, etc.), an attack against it is known as The Beast. This attack makes it possible for people with access to a trusted location on your network to break into your TLS session and eavesdrop on your communications.

Thankfully, The Beast attack can easily be prevented. All you have to do is use TLS v1.1+ ciphers. This is why The Beast is no longer considered a critical attack vector. See also:

How long will AES-256 remain suitable for security?

The rise of quantum computing has caused a stir in the security community, with fears that it will render many of our security algorithms useless. While quantum computing looks like it will change the landscape regarding public-key algorithms, it is not believed to have significant impacts on algorithms like AES-256 soon.

The biggest quantum computing threat against AES is currently considered to be Grover’s algorithm. It is theorized to be able to perform a brute-force key search using quadratically fewer steps than required in classical computing. The implication is that an attacker with access to a quantum computer may be able to successfully attack a cipher with a key twice the length of what would generally be possible in classical computing.

However, the expense of quantum hardware and real-world complications of using Grover’s algorithm mitigate the threat of these attacks. NIST states that “… AES 128 will remain secure for decades to come. Furthermore, even if quantum computers turn out to be much less expensive than anticipated, the known difficulty of parallelizing Grover’s algorithm suggests that both AES 192 and AES 256 will still be safe for a very long time.”

Currently, there is no great rush to move away from AES to other symmetric key algorithms.

How is the cipher chosen in an SSL or TLS session?

Generally, when an SSL client, such as an email program or web browser, connects to a server and wishes to use SSL or TLS, the client sends the server a list of encryption ciphers it supports. The server then goes through the list and chooses the first match it supports. Usually, the client orders the list with the most secure methods first so that the most secure method supported by both the client and server is selected. Sometimes, the client orders the list based on other criteria to make a compromise between security and speed. This can result in a sub-optimal cipher being chosen.

Most modern web and email servers that support TLS encryption will have a wide range of different encryption techniques that they support. These can vary from 128-bit RC4, to 256-bit AES, to others. This range of options allows users with old or broken software to still take advantage of encryption, even if it is weaker than what is considered ideal in many situations.

Additionally, most companies that provide security services do not permit techniques that are deemed weak and can be broken easily. If you are connecting to a reputable service provided over TLS, the type of encryption will almost certainly be determined by your client program (i.e., email program or web browser), based on the options listed by the server.

What encryption techniques are supported by modern web browsers?

The latest versions of most modern browsers should support appropriate encryption algorithms.

You can check out whether your web browser uses up-to-date security practices by visiting:

https://www.howsmyssl.com/

If it says “Probably Okay,” it means that no security problems could be detected. If it says “Improvable” or “Bad,” your browser may be using an outdated version of TLS or have other security issues. In this case, you need to update to the latest version of your browser or switch to a browser like Firefox or Chrome that is actively being developed.

What encryption techniques were supported by legacy web browsers?

Before AES support became universal for older web browsers, we analyzed cipher support to see which ones supported AES. For posterity, we include this information here:

Web Browser
Operating System Best Cipher Verdict?
Native Android Browser (LG G3) Android v4.4.2+ AES 256-bit Good!
Chrome v39+ Android v4.4.2+ AES 256-bit Good!
Firefox Mobile v8+ Android AES 256-bit Good!
Safari iOS v8+ (iPhone/iPad/etc.) AES 256-bit Good
Safari iOS v5.0.1 AES 128-bit Good
Safari iOS v2.2 AES 128-bit Good
Silk Kindle Fire RC4 128-bit Terrible
Firefox v35+ Windows XP & Vista, Mac OSX AES 256-bit Good!
Firefox v8+ Windows XP & Vista, Mac OSX AES 256-bit Good!
Firefox v3.0.5 Windows XP & Vista, Mac OSX AES 256-bit Good!
Safari v8+ Windows Vista/7, Mac OSX AES 256-bit Good
Safari v5.1.2 Windows Vista/7, Mac OSX AES 128-bit Good
Safari v3.2.1 Windows Vista, Mac OSX AES 128-bit Good
Safari v3.2.1 Windows XP RC4 128-bit Terrible
Chrome v40+ Windows Vista/7, Mac OSX AES 256-bit Good!
Chrome v15+ Windows Vista/7, Mac OSX AES 256-bit Good!
Chrome v1.x Windows Vista AES 128-bit Good
Chrome v1.x Windows XP RC4 128-bit Terrible
Internet Explorer v11 Windows 7 AES 256-bit Good
Internet Explorer v9 Windows 7 AES 128-bit Good
Internet Explorer v9 Windows Vista RC4 128-bit Terrible
Internet Explorer v7 & v8 Windows Vista AES 128-bit Good
Internet Explorer v8 Windows XP RC4 128-bit Terrible
Internet Explorer v7 Windows XP RC4 128-bit Terrible
Internet Explorer v6 Windows XP RC4 128-bit Terrible
Opera v26+ Mac OSX AES 256-bit Good!
Opera v11.10+ Windows Vista AES 256-bit Good!
Opera v9.62 Windows XP & Vista AES 256-bit Good!

So, by default, legacy browsers will take advantage of AES encryption when available. We also found that any program that uses old windows default SSL libraries will use RC4 in Windows XP and 128-bit AES in Windows Vista.

What encryption techniques are supported by modern email programs?

Asking this question about web browsers asks what is supported by the various email programs out there. If you are using a WebMail interface to access your email, the answer depends on your web browser. The latest versions of well-known email programs will use suitable encryption techniques, including AES-256. If you are using outdated/legacy email software, you should immediately update it to the latest version.

What encryption techniques were supported by legacy email programs?

We tested several popular legacy email programs on legacy operating systems to see the best encryption cipher they could use. This was done before AES usage became essentially universal. Here are the results (for posterity):

Email Program Operating System Verdict? Results
Mozilla Thunderbird v2+ Windows XP & Vista Good! 256-bit AES
Thunderbird v2+ Mac OSX v10.4.11 Good! 256-bit AES
Outlook 2010 Windows 7 Good! 256-bit AES
Outlook 2007 Windows XP Terrible 128-bit RC4 is the best supported
Outlook 2007 Windows Vista Good 128-bit AES chosen (though 256-bit is there, it is not listed 1st in the program and thus not used)
Outlook 2003 Windows XP Terrible 128-bit RC4 is the best supported
Mail.app Mac OSX v10.10 Good 256-bit AES
Mail.app Mac OSX v10.5.5 Good 128-bit AES chosen (though 256-bit is there, it is not listed 1st in the program and thus not used)
Mail.app Mac OSX v10.4.11 Good 128-bit AES chosen (though 256-bit is there, it is not listed 1st in the program and thus not used)
Mail.app iPhone v2.2 Good 128-bit AES chosen (though 256-bit is there, it is not listed 1st in the program and thus not used)
Eudora v7 Windows XP Good 256-bit AES
Eudora v8 Mac OSX v10.4 Good 256-bit AES
Entourage v12 Mac OSX v10.4 Terrible DES

We see a similar pattern here. In most cases, the cipher used depended on the Operating System and not the program.  Some programs roll their own SSL (i.e., Thunderbird/Eudora), and some use the OS built-in libraries. So, from this, we can infer that any newer version of Outlook on Vista or Windows 7+ will go for at least 128-bit AES; most things on Windows XP would use 128-bit RC4, etc.

How to force the use of AES-256 on secure web browsers and email programs

Web browsing clients like Mozilla Firefox or Opera and email clients like Thunderbird use AES-256 by default, as long as the server supports it.

However, it’s also possible to force the use of 256-bit AES encryption. This can be useful if your organization mandates that secure connections use 256-bit AES or if you do not trust that the servers you wish to connect to will have secure ciphers.

You can ensure that AES-256 is always used by following the instructions below. If the server does not support AES-256, the connection will fail.

Mozilla Firefox:

  1. Type “about:config” in the address bar to open up the detailed list of configuration parameters.
  2. Scroll down to “tls.version.min”, and ensure that it is set to “1” as an absolute minimum. This will turn off support for SSLv2 and SSLv3.
  3. Search for “ssl3.”
  4. Look for the ciphers that do not include “aes_256” in their names. If any of these say “true,” double click on them to change them to “false.” This will make them no longer available for use.
  5. You will be left with various versions of AES-256 with TLS v1.0+.
  6. You don’t have to restart Firefox for this to take effect.

Mozilla Thunderbird:

  1. From Thunderbird’s home screen, click on the three horizontal lines in the top right corner.
  2. Click Preferences, then Preferences once more in the menu that comes up.
  3. Click Advanced, then scroll to the bottom right where it says Config Editor. Click on Config Editor.
  4. Be aware that configuration changes can affect the program’s stability, and only proceed if you know what you are doing. Click I Accept the risk.
  5. Scroll down to “tls.version.min”, and ensure that it is set to “1” as an absolute minimum. This will turn off support for SSLv2 and SSLv3.
  6. Search for “ssl3 “
  7. Look for the ciphers that do not include “aes_256” in their names. If any of these say “true,” double click on them to change them to “false.” This will make them no longer available for use.
  8. Restart Thunderbird so that any persistent connections are broken and re-opened.
  9. Make sure that your email accounts are all configured to use SSL or TLS (not “if available,” but “always”).
  10. If possible, go to your email provider and disallow insecure connections to your account. This will make the connection fail even if the email program is accidentally configured to make a secure connection. (LuxSci allows this to be set on the user-level or enforced by policy account-wide).

Skype:

  • It’s off-topic, but Skype uses 256-bit AES encryption, so if you use it for chat or voice calls, your data is also being encrypted in this fashion.

Locking down your website (in Apache)

If you are a website owner and have TLS security on it, you can lock it down so that the only cipher your website supports is 256-bit AES. This takes the choice out of the end user’s hands. They can either use AES-256, or they won’t be able to connect to the website. However, this also means that some users may not be able to access your site unless they change to a more secure browser.

To lock your site down so that it only supports 128-bit and 256-bit AES, add the following to your Apache httpd.conf file:

SSLCipherSuite AES256-SHA:AES128-SHA

This can be added globally, in a virtual host, or even in your .htaccess file. It will ensure that any successful connection to your site will use one of these ciphers. Be sure to add it to the secure settings for your site and not just the insecure site area. More information is available at Apache.

You will generally want only to support TLS v1.2+ and NIST-recommended cipher suites. See: what level of TLS is required for HIPAA.

AES encryption is still reliable

AES encryption is still the preferred standard for TLS. Modern machines don’t noticeably affect performance, providing an adequate security level.

However, it’s important to note that TLS only protects data sent between you and the server. When you send and receive an email, the message data travels in the clear, so TLS does not protect it throughout the entire journey. The Case for Email Security explains this in more detail.

Thankfully, services like LuxSci’s SecureLine provide email encryption, which can safeguard your email the whole way. Contact our team for more information on how to protect your organization’s data.

Get in touch

Find The Best Solution For Your Organization

Talk To An Expert & Get A Quote




A member of our staff will reach out to you

Get Your Free E-Book!

LuxSci High Email Deliverability Best Practices Paper

What you’ll learn:

Enter your email to download now!

We respect your privacy. No spam, ever.

Related Posts

HIPAA Compliant Email

Top HIPAA Compliant Email Use Cases for Medical Equipment Providers

For medical equipment providers – particularly those offering in-home care and delivery – rapid and reliable communication is critical. Whether you’re notifying patients about a new CPAP machine, reminding them of a delivery appointment, or sending a promotional offer on home oxygen supplies, email is still one of today’s most effective communication channels.

But, does your current email provider put you at risk?

Here’s the catch: when emails contain health-related information, i.e., protected health information (PHI), you must ensure you’re not just being effective, but that you’re secure and fully HIPAA-compliant as well. 

The good news: When you use secure, HIPAA compliant email correctly, you can ensure data privacy and security, while unlocking faster communication, improved patient or customer engagement, and better outcomes.

And you may even sleep better at night.

Let’s take a look at the most impactful use cases for HIPAA compliant email in the medical equipment space, and how secure, high volume email can optimize both the patient experience and your operations.

Why Email for Medical Equipment Providers

From ordering groceries to reading financial statements, consumers, including your patients and customers, already use email regularly. It’s familiar, simple, and trusted – and it doesn’t require installing applications or learning new tech.

For healthcare companies manufacturing and delivering home medical equipment, email is a fast, direct, and convenient way to communicate with your patients and customers. When used effectively and, most importantly, securely, secure email simply works.

HIPAA Compliance: A Catalyst for Communication – Not a Limitation

HIPAA compliance is often considered a hurdle to effective patient engagement via email. Fear of falling afoul of HIPAA regulations, and suffering the consequences of doing so, medical equipment suppliers can be reluctant to include PHI in their communications, missing out on opportunities to better connect with patients with personalized messages and relevant health information.

With the right HIPAA-compliant email solution, such as LuxSci, you can:

  • Send a variety of health-related info via email containing PHI – securely
  • Automate email workflows, such as order confirmations and refill reminders
  • Deliver more relevant marketing messages to carefully segmented target audiences
  • Scale your patient engagement campaigns with 98% delverability

HIPAA Compliant Email Use Cases for Medical Equipment Providers

Let’s take a closer look at some of the most common HIPAA compliant email use cases for medical equipments providers – all with 

Use Case #1: New Product Releases and Equipment Upgrades

Why It Matters: Keep patients informed and engaged.

Launching a new model of your leading CPAP machine? New upgraded insulin pumps with Bluetooth syncing? You can use secure email to safely inform existing patients about relevant product innovations that support their care and overall healthcare journey. At the same time, you can market your products and use email to help drive and grow your business.

Benefits

  • Personalized product recommendations and new offers
  • HIPAA-compliant messages and content with patient-specific data
  • Maximise cross-selling and up-selling opportunities

Use Case #2: Promotional Offers and Special Discounts

Why It Matters: Drive revenue without compliance risk

Yes, you can send promotional content with PHI. As long as you use HIPAA compliant email and obtain proper consent from your patients, you can send special offers for products, such as CPAP filters, replacement parts, or orthopaedic braces – securely and effectively.

Benefits

  • Boost reorder rates and upsells
  • Reach patients with personalized, secure marketing messages
  • Stand out from competitors that send out generic communications

Use Case #3: Order Confirmations and Delivery Updates

Why It Matters: Keep patients informed and deliver a good experience

When patients rely on home deliveries for critical medical equipment and supplies, timely and relevant updates are vital. HIPAA compliant email allows you to securely send:

  • Order confirmations
  • Delivery tracking links
  • Equipment setup instructions

Benefits

  • Peace of mind for patients and caregivers
  • Fewer support calls
  • Improved delivery and overall patient satisfaction

Use Case #4: Appointments and In-Home Service Reminders

Why It Matters: Reduce missed appointements and optimize scheduling

Whether it’s a CPAP fitting, oxygen tank swap, or home nurse visits, appointment reminders keep patients informed and prevent delays in care delivery and schedules.

HIPAA compliant appointment emails can include:

  • Patient names and appointment details
  • Secure rescheduling links
  • Technician or home nurse arrival windows

Benefits

  • Fewer missed visits
  • Improved care continuity
  • Better coordination with caregivers
  • Enhanced patient satisfaction and trust 

Use Case #5: Payment Reminders and Billing Notices

Why It Matters: Accelerate revenue collection

Secure email makes it easy to send billing statements, insurance updates, or out-of-pocket payment reminders related to medical equipment and in-home care – even when they contain PHI or medical codes.

Benefits

  • Faster payment collections
  • Reduced billing confusion
  • Clear and compliant patient communications

Use Case #6: New Supply and Refill Reminders

Why It Matters: Promote adherence and retention

Don’t wait for patients to run out of critical supplies. Use automated, HIPAA compliant email to remind them it’s time to reorder medical products and/or supplies.

Benefits

  • Better patient outcomes
  • Higher reorder rates
  • Lower administrative overhead 

LuxSci HIPAA-Compliant Email for Medical Equipment Providers

HIPAA-compliant email is no longer optional, it’s essential, especially for modern medical equipment providers who want to provide the best possible experience for their patients, optimize operations, and retain an edge in an increasingly competitive healthcare landscape. 

For medical equipment providers delivering in-home care or direct-to-patient services, secure email enables smarter, faster, and more personalized communications – all in a secure, HIPAA compliant way on one of today’s most used communications channels.

With LuxSci, you can embrace email communication with confidence, safe in the knowledge that your messages are secure, compliant, and your emails are high-performing and effective. 

LuxSci Offers:

  • Automated encryption (TLS, Secure Portal Pickup, PGP, S/MIME).
  • SMTP and API integration, with EHRs, CRMs, and billing systems.
  • Automated workflows, for intelligent patient engagement.
  • High-volume email capabilities, for new product offers, upgrades, and promotions.
  • Signed BAA and full HIPAA compliance built in.

Whether you’re serving 100 patients or 100,000, LuxSci securely scales with you. Contact us to supercharge your engagement efforts today. 


Medical Equipment Providers Secure Email Use Cases FAQs

Can I send promotional emails about medical Equipment under HIPAA?

Yes, you can. With proper patient consent and a HIPAA-compliant email solution with a signed BAA, you can securely send personalized promotional messages.

Is it safe to include order or delivery details in emails?

Yes, when using a secure, encrypted email solution like LuxSci, you can send PHI, delivery info, and tracking links without violating HIPAA regulations.

Do patients need to log into a portal to read secure emails?

Not necessarily. LuxSci supports multiple delivery methods, including TLS-encrypted direct delivery and secure pickup portals, giving you and your patients options in regards to delivering and reading emails, respectively.

Can LuxSci help automate reminders and email flows?

Absolutely! LuxSci supports automated workflows, APIs, and integrations to trigger reminders, alerts, and follow-ups based on email engagement and recipient actions.

How does secure email impact revenue?

Secure email helps you increase reorder rates, reduce billing friction, and improve patient engagement, all of which can lead to increased revenue.

patient engagement tools

What Are the Best Patient Engagement Tools for Healthcare?

The best patient engagement tools help providers strengthen communication, improve follow-up care, and simplify access to sensitive health information. They combine secure messaging, appointment management, educational content, and remote monitoring to build stronger patient relationships while maintaining HIPAA compliance. When implemented correctly, patient engagement tools create smoother interactions and better health outcomes without adding unnecessary administrative burden.

Importance of patient engagement tools in modern care

Healthcare is most effective when patients understand and participate in their own treatment. Patient engagement tools make this possible by connecting patients with providers through secure digital channels. These systems encourage participation through appointment reminders, personalized messages, and simplified access to medical records. When patients can review their care plans or ask questions directly, they are more likely to follow treatment instructions and attend scheduled visits. Over time, this continuous communication builds trust and allows healthcare professionals to detect potential issues before they develop into serious problems.

Features that define effective patient engagement tools

Strong encryption and verified identity controls keep sensitive data protected during every exchange. Patient portals that use Transport Layer Security and multifactor authentication safeguard personal health details and ensure that only authorized users can view information. The best tools also support mobile access with full encryption, allowing patients to manage appointments or view test results securely from any device. Integration with electronic health records ensures that updates are instantly reflected across systems, reducing the chance of errors or duplicate data entry. When designed properly, patient engagement tools blend security with convenience so that both patients and providers benefit.

Communication and education that build connection

Clear communication encourages adherence and reduces anxiety. Automated appointment confirmations, post-visit surveys, and message templates help staff stay connected without creating extra workload. Some systems allow clinicians to send follow-up instructions or educational materials directly through secure messaging, supporting patient understanding of medications or rehabilitation exercises. Educational modules tailored to specific conditions help patients take an active role in managing chronic illnesses. These features turn patient engagement tools into an extension of quality care rather than an afterthought of recordkeeping.

Compliance and data protection standards

Because patient engagement tools handle Protected Health Information, they must align with the HIPAA Privacy and Security Rules. A complete Business Associate Agreement outlines encryption, breach notification, and data management responsibilities between healthcare providers and vendors. Regular security testing and audit trails confirm that access controls function correctly. Organizations should verify that vendors maintain certifications such as SOC 2 Type II or HITRUST to demonstrate consistent security practices. Maintaining these safeguards ensures that patients can trust digital interactions as much as in-person conversations.

Workflow integration and practical use

A successful implementation depends on how well technology fits daily routines. Tools that integrate directly with scheduling, billing, and clinical systems reduce repetitive tasks and improve accuracy. For example, when a patient confirms an appointment through a secure portal, the update should appear automatically on the provider’s schedule. Real-time synchronization minimizes manual effort and reduces missed visits. Configurable dashboards give staff visibility into appointment status and message queues, helping clinics manage high patient volumes efficiently. When engagement technology adapts to workflow rather than reshaping it, adoption rates remain high and disruption stays low.

Measuring the impact of patient engagement tools

Tracking effectiveness requires measurable outcomes. Providers can evaluate engagement levels through message response times, portal login frequency, and satisfaction surveys. Patterns in this data reveal how well patients are using available features and whether communication gaps remain. Analytics tools can highlight where follow-up communication improves adherence or reduces unnecessary visits. With clear metrics, healthcare organizations can refine outreach methods and identify which digital strategies genuinely improve the patient experience. In this way, patient engagement tools become a guide for continuous improvement rather than a one-time implementation.

Selecting the right partner and platform

Choosing a vendor involves more than comparing features. Providers should assess customer support responsiveness, update frequency, and integration experience. Pilot programs with small user groups reveal how patients interact with the interface and how well staff can manage message volume. A reliable provider offers migration assistance, thorough training, and transparent pricing that accounts for storage and support over the contract term. When the system proves simple for both clinicians and patients, full deployment typically follows with fewer technical complications. Over time, dependable patient engagement tools strengthen relationships, enhance care coordination, and improve satisfaction across the healthcare system.

ProtonMail HIPAA Compliant

What Are the Best Email Security Companies for Healthcare?

The best email security companies protect sensitive healthcare information with proven encryption, reliable identity controls, and full compliance with HIPAA requirements. They offer systems that keep Protected Health Information private without interrupting clinical communication. Choosing the right partner require an understanding of how each provider manages data, prevents threats, and supports healthcare-specific security needs.

Why email security companies matter

Healthcare communication runs through email more than any other channel. Appointment confirmations, lab results, and billing inquiries often pass through digital messages that contain confidential data. Without strong protection, these exchanges create serious risk. Email security companies help healthcare organizations avoid exposure by applying automatic encryption, authentication, and continuous monitoring. The right solution lets staff focus on patient care rather than worrying about how messages are being transmitted. Security becomes part of the background, always active but never intrusive.

Functions of leading email security companies

Every capable provider delivers a mix of encryption, authentication, and message filtering. Encryption protects messages from interception during transmission and keeps attachments unreadable outside approved systems. Authentication confirms that each sender and recipient is legitimate, preventing impersonation attacks that can lead to data theft. Filtering technology examines messages for malicious links or attachments before they ever reach an inbox. Together, these features reduce the chances of a privacy breach while allowing essential communication to continue without interruption.

Meeting HIPAA and regulatory obligations

Healthcare organizations face distinct legal responsibilities that extend beyond general data protection. Email security companies that work with medical clients must comply with the HIPAA Privacy and Security Rules. They sign Business Associate Agreements that define how Protected Health Information is stored and transmitted. A complete system includes audit logs, breach notification procedures, and administrative controls to manage user access. Certifications such as SOC 2 Type II or HITRUST show that the company’s safeguards have been independently verified. These commitments transform a vendor into a compliance partner rather than a simple service provider.

Integration with healthcare workflows

A secure system should work quietly within existing tools and routines. The best email security companies design software that integrates directly with clinical communication platforms, scheduling software, and record systems. This ensures that encrypted messages and attachments move seamlessly without extra manual steps. Automated encryption policies eliminate the need for staff to remember security settings while handling urgent messages. When technology fits naturally into the daily workflow, adoption improves, and staff stay focused on patient interaction instead of troubleshooting email systems.

Protection through authentication and identity control

Cyberattacks often succeed through weak identity verification rather than failed encryption. Modern solutions combine multi-factor authentication with domain validation to confirm that every message comes from a trusted source. Advanced phishing detection blocks lookalike domains and suspicious requests that mimic internal communication. These measures reduce the number of successful impersonation attempts and keep confidential data within trusted channels. For healthcare organizations that depend on frequent message exchanges, strong identity control is as vital as encryption itself.

Evaluating reliability and transparency

Trust is built through visibility. Leading email security companies provide administrators with detailed reports that show message delivery status, blocked threats, and policy changes. Transparent logging makes it easier to confirm compliance during audits and internal reviews. A clear view of system activity also supports faster response when something goes wrong. When security information is easy to understand, it allows IT teams and compliance officers to make informed decisions rather than guessing at what might have occurred behind the scenes.

Protection, cost, and usability

Cost and convenience influence every technology decision. The right solution balances strong protection with an interface that staff can use comfortably. Overly complex systems can slow response times and create frustration, while simple but weak systems fail to protect sensitive data. Email security companies that understand healthcare operations design platforms that feel intuitive to clinical staff yet meet rigorous privacy standards. Predictable pricing models based on user count or message volume make budgeting straightforward, which helps long-term planning for both small practices and large health networks.

Evaluating support and long-term stability

Technology alone does not ensure security. Healthcare organizations depend on responsive support when configuration issues arise or new regulations appear. Providers that offer direct assistance, training materials, and clear documentation save administrators valuable time. Long-term reliability also matters. Established email security companies with a proven record of service are more likely to maintain and improve their systems over many years. When evaluating vendors, organizations should look for financial stability, regular software updates, and a strong customer base that demonstrates consistent satisfaction.

A sustainable approach to secure communication

Email is still central to healthcare communication despite newer collaboration tools. The most successful security strategies accept this reality and focus on making email safe rather than replacing it. Reliable encryption, verified identity, and transparent reporting form the structure of effective protection. By selecting experienced email security companies that combine technical strength with usability, healthcare organizations can protect patient information while maintaining efficient workflows. Security then becomes a quiet partner in care delivery, supporting every message that moves between providers, patients, and administrative staff.

secure communication platform

What Is The Best Secure Communication Platform For Healthcare?

The best secure communication platform combines strong encryption, reliable access control, detailed audit tracking, and legal accountability under the HIPAA Privacy and Security Rules. Healthcare teams rely on these systems to exchange Protected Health Information without disruption. A secure communication platform that integrates with clinical tools, automates security standards, and provides transparent monitoring allows providers to maintain compliance while focusing on patient care.

Importance of a secure communication platform in healthcare

Healthcare depends on constant coordination between physicians, staff, and patients. Emails, messages, and shared files often include sensitive medical information that requires protection at every stage. A secure communication platform helps prevent data loss or exposure by enforcing encryption both in transit and at rest. It also preserves trust between patients and providers by ensuring confidentiality. When security controls operate automatically in the background, communication becomes smoother, and staff can work without worrying about compliance gaps that may place data at risk.

Encryption and identity protection

Encryption is the foundation of message security. Transport Layer Security establishes a private path between servers, while message-level encryption adds another layer for content that travels beyond trusted systems. Access to these communications depends on verified identity through multi-factor authentication, biometric checks, or device-based tokens. Timeout rules reduce risk on shared computers where several staff members may use the same terminal. These features work together to protect patient data from interception or misuse and give healthcare organizations tangible proof that messages remain secure.

Business Associate Agreements and legal accountability

Any organization that handles Protected Health Information must ensure its vendors meet the same compliance standards. A Business Associate Agreement defines each party’s responsibilities for data protection, breach notification, and record retention. It should reference specific safeguards listed in 45 CFR 164.308 and 164.312 to confirm that the platform follows HIPAA’s requirements. Independent audits such as SOC 2 Type II or HITRUST add assurance that these controls are active and reliable. Having clear contractual obligations supported by certifications limits ambiguity and strengthens legal protection for all involved parties.

Clinical integration and workflow compatibility

For a secure communication platform to be effective, it must fit naturally into the healthcare environment. Direct integration with electronic health records allows staff to manage messages within existing systems rather than switching between separate tools. Open APIs let hospitals customize data flow between scheduling, billing, and messaging platforms. Single sign-on simplifies authentication so clinicians can access messages quickly while maintaining compliance. Mobile access that retains encryption helps providers respond from different locations without compromising security. When communication aligns with daily routines, adoption improves and administrative burden drops.

Monitoring and audit visibility

Maintaining compliance requires visibility into system activity. An effective platform records message access, file downloads, and configuration changes through immutable logs. These records enable privacy officers to trace who viewed information and when it was accessed. Alerts for suspicious logins or unusual traffic help identify problems early. Retention settings that match policy requirements simplify discovery requests while preventing unnecessary storage costs. This combination of automation and transparency allows healthcare organizations to demonstrate compliance rather than merely claim it.

Evaluating usability and implementation

Selecting a platform should include a structured pilot across departments. Rather than focusing only on technical features, decision makers should observe how easily clinicians and staff adapt to the workflow. A useful evaluation looks at message turnaround times, administrative effort, and support responsiveness. Gathering feedback from multiple roles reveals practical issues that may not appear during demonstrations. Vendors that assist with migration, setup, and staff training tend to reduce deployment time and lower the likelihood of communication errors during transition.

Balancing cost, scalability, and compliance

Cost considerations extend well beyond subscription fees. Storage limits, archive access, and support tiers influence total expense over time. Aligning pricing with staff size and data retention policies prevents unplanned spending as the organization grows. Role-based administration and delegated access can reduce reliance on central IT teams, creating flexibility in large healthcare networks. A secure communication platform that scales smoothly maintains the same encryption, authentication, and monitoring standards as the user base expands. When compliance, usability, and affordability intersect, patient communication becomes safer, faster, and more reliable for everyone involved.

You Might Also Like

LuxSci Secure Email Reporting Statistics

New Reporting Features Go Deeper on Email Deliverability Statistics, Trends and Analysis

We recently rolled out new email reporting features, taking deliverability depth and analysis to new levels. If you’re a current LuxSci customer and haven’t checked them out, now’s the time. If you’re new to LuxSci, learn more below, and don’t hesitate to reach out for more info – or a demo.

LuxSci secure communications solutions have always featured rich reporting on email deliverability, including volumes and percentages for emails:

  • in queue
  • opened
  • clicked
  • failed
  • secured

With our latest release, we made these powerful statistics easier to consume and analyze with an improved user interface for more efficiency and greater ease-of-use. Users can simply select the type of report they’d like and customize it using a range of filtering selections. This is great for diving deeper into your email performance to make adjustments on-the-fly, and to spot trends or opportunities for better engagement that you may have missed before.

New UI – Email Deliverability Statistics

LuxSci Secure Email Reporting Statistics

Get more granular, ID trends in real time with Split Reporting

As part of this release, we are pleased to introduce our Split Reporting feature, which empowers users to drill down on email deliverability statistics across a range of parameters, including:

  • subject
  • from address
  • recipient domains
  • marketing ID or campaign
  • custom field

For example, users can analyze email deliverability statistics by subject to determine which ones are performing best, by use case to track results by campaign, or to track performance by recipient email domains. With split reporting, users also can analyze email volumes across queued, delivered, opened, failed and clicked parameters, and determine click-through rates (CTR) to measure effectiveness and ROI of campaigns.

New Feature Example – Split Reporting by Recipient Domain

LuxSci Secure Email Split Reporting

If you’d like to learn more, reach out and connect with us today!

 

Healthcare Marketing Compliance

What Is Email Marketing For Healthcare?

Email marketing for healthcare is targeted communication strategy that medical organizations use to engage patients, promote wellness services, share health education content, and encourage preventive care while maintaining regulatory compliance and patient privacy protections. This specialized approach helps healthcare providers, payers, and suppliers build stronger relationships with their communities through informative, valuable email communications. Email marketing for healthcare differs from traditional marketing because it must balance promotional objectives with medical ethics, patient trust, and strict privacy regulations. Understanding email marketing for healthcare helps medical facilities develop communication programs that support patient engagement, improve health outcomes, and grow their practices while respecting regulatory requirements and maintaining professional standards.

The Use of Email Marketing For Healthcare

Email marketing for healthcare encompasses several communication types including patient education newsletters, appointment reminders, wellness program promotions, and health screening campaigns. Patient education emails provide valuable health information, seasonal wellness tips, and disease management guidance that helps recipients make informed healthcare decisions. These educational communications build trust and establish healthcare organizations as reliable health information sources.

Appointment and follow-up communications use email to streamline patient care coordination, reduce no-show rates, and improve treatment adherence. Wellness program promotions encourage patients to participate in health screenings, fitness classes, vaccination clinics, and other preventive care activities. Event marketing emails promote health fairs, educational seminars, and community health initiatives that benefit both patients and the broader community. Service line marketing allows healthcare organizations to promote specific departments or specialties to patients who have expressed interest in related services. Women’s health programs, cardiac care services, and orthopedic treatments can be marketed to relevant audience segments based on demographic factors and self-reported health interests rather than protected medical information.

Patient retention campaigns use email to maintain ongoing relationships with existing patients, encouraging regular check-ups, annual screenings, and continued engagement with healthcare services. These campaigns focus on long-term health maintenance rather than immediate sales objectives.

Regulatory Framework and Privacy Considerations

Email marketing for healthcare must comply with HIPAA privacy regulations that govern how protected health information can be used for communication purposes. Healthcare organizations cannot use patient medical records, diagnosis codes, or treatment histories for marketing without explicit written authorization from patients. General health education content can be sent without authorization, but targeted campaigns based on specific health conditions require proper consent procedures.

The CAN-SPAM Act applies to all commercial healthcare emails, requiring truthful subject lines, clear sender identification, valid physical addresses, and functional unsubscribe mechanisms. Healthcare organizations must honor opt-out requests promptly and maintain suppression lists to prevent future unwanted communications. State privacy laws may impose additional requirements that healthcare organizations must research and implement. Business associate agreements become necessary when healthcare organizations use third-party email platforms or service providers to handle patient information during marketing activities. These agreements ensure that vendors maintain appropriate privacy protections and comply with healthcare industry regulations. Healthcare organizations remain responsible for ensuring their email marketing practices meet all applicable regulatory requirements.

Patient consent management requires systems to track when and how patients provided authorization for different types of marketing communications. Organizations need documentation showing patient consent for targeted campaigns and procedures for updating preferences when patients change their communication choices.

Technology Platforms and Integration Requirements

Email marketing for healthcare requires specialized platforms that provide HIPAA compliance features, data encryption, audit logging, and business associate agreements. These platforms must protect patient information during campaign creation, delivery, and performance tracking while maintaining security standards appropriate for healthcare data. Standard consumer email marketing platforms may not provide adequate privacy protections for healthcare communications.

Integration capabilities allow email marketing for healthcare systems to connect with electronic health records, patient management platforms, and appointment scheduling systems. These integrations enable automated campaign triggers based on appointment dates, discharge events, or routine care intervals without exposing sensitive medical information to unauthorized personnel. Single sign-on features allow staff to access email marketing tools using existing healthcare system credentials. List management functionality should support consent tracking, preference management, and compliance reporting requirements specific to healthcare organizations. Segmentation tools need to work with demographic and behavioral data rather than protected health information to maintain privacy compliance. Automated workflows can personalize communications based on publicly available information and patient preferences.

Security monitoring and audit trails provide detailed logging of who accesses patient information, what campaigns are created and sent, and how patient data is used for marketing purposes. These features support compliance demonstrations during regulatory reviews and help organizations investigate potential privacy incidents.

Patient Engagement and Content Strategies

Email marketing for healthcare should prioritize patient value and health outcomes over purely promotional messaging to build trust and encourage long-term engagement. Educational content performs better than sales-focused communications because patients appreciate receiving useful health information that helps them make better healthcare decisions. Content should be evidence-based, medically accurate, and reviewed by qualified healthcare professionals before distribution.

Personalization strategies must balance engagement benefits with privacy requirements and regulatory constraints. Basic personalization using names, preferred languages, and geographic information can improve response rates without requiring protected health information. More detailed personalization based on health interests or conditions requires explicit patient authorization and careful data management procedures. Timing and frequency considerations help healthcare organizations maintain patient engagement without overwhelming recipients with excessive communications. Different types of healthcare emails may require different sending schedules based on urgency, content type, and patient preferences. Appointment reminders need timely delivery, while educational newsletters can follow regular monthly or quarterly schedules.

Interactive content such as health assessment questionnaires, symptom checkers, and wellness challenges can increase patient engagement while providing valuable health information. These interactive elements should collect only necessary information and maintain appropriate privacy protections throughout the user experience.

Performance Measurement and Optimization

Email marketing for healthcare should be evaluated using metrics that reflect patient engagement, health outcomes, and organizational objectives rather than purely commercial success indicators. Appointment booking rates, health screening participation, and patient satisfaction scores provide more meaningful performance measurements than traditional marketing metrics alone. These healthcare-specific metrics demonstrate how email communications support patient care and organizational mission.

Patient feedback collection through surveys, focus groups, and direct communication helps healthcare organizations understand recipient preferences and identify areas for improvement. Regular feedback collection demonstrates commitment to patient-centered communication approaches and provides insights for optimizing future campaigns. Feedback should guide content development, timing decisions, and overall communication strategy adjustments. A/B testing can improve campaign performance by comparing different subject lines, content formats, sending times, and call-to-action approaches while maintaining compliance requirements. Testing should focus on elements that affect patient engagement and health outcomes rather than manipulative tactics that might undermine patient trust.

Long-term performance analysis helps healthcare organizations understand the cumulative impact of their email marketing efforts on patient relationships, care utilization patterns, and health outcomes. This analysis supports continuous improvement initiatives and demonstrates the value of patient communication investments to organizational leadership and stakeholders.

How Do You Know if Software is HIPAA Compliant?

How Do You Know if Software is HIPAA Compliant?

As in any industry, the healthcare sector is eager to embrace any new technology solution that increases productivity, enhances operational efficiency, and cuts costs. However, the rate at which healthcare companies – and their patients and customers – have had to adopt new software and digital tools has skyrocketed since the pandemic. And while a lot of this software is beneficial, a key question arises: is it HIPAA compliant? While an application may serve an organization’s needs – and may be eagerly embraced by patients – it also needs to have the right measures in place to safeguard protected health information (PHI) to determine if it is indeed HIPAA compliant.

Whether you’re a healthcare provider, software vendor, product team, or IT professional, understanding what makes software HIPAA compliant is essential for safeguarding patient data and insulating your organization from the consequences of falling afoul of HIPAA regulations. 

With this in mind, this post breaks down the key indicators of HIPAA compliant software, the technical requirements you should look for, and best practices for ensuring your software is HIPAA compliant.

What Does It Mean for Software to Be HIPAA-Compliant?

The Health Insurance Portability and Accountability Act (HIPAA)  sets national standards for safeguarding PHI, which includes any data related to a patient’s health, treatment, or payment details. In light of this, any applications and systems used to process, transmit, or store PHI must comply with the stringent privacy, security, and breach notification requirements set forth by HIPAA.

Subsequently, while healthcare organizations use a wide variety of software, most of it is likely to be HIPAA-compliant. Alarmingly, many companies aren’t aware of which applications are HIPAA-compliant and, more importantly, if there’s a need for compliance in the first place.   

However, it’s important to note that HIPAA itself does not certify software. Instead, it’s up to software vendors to implement the necessary security and privacy measures to ensure HIPAA compliance. Subsequently, it’s up to healthcare providers, payers, and suppliers to do their due diligence and source HIPAA compliant software. 

How to Determine If Software Is HIPAA Compliant

So, now that we’ve covered why it’s vital that the applications and systems through which sensitive patient data flows must be HIPAA compliant, how do you determine if your software meets HIPAA requirements? To assess whether software is HIPAA compliant, look for these key indicators:

1. Business Associate Agreement (BAA)

A HIPAA compliant software provider must sign a Business Associate Agreement (BAA) with covered entities, i.e., the healthcare company. A BAA is a legal contract that outlines the vendor’s responsibility for safeguarding PHI. If a software provider doesn’t offer a BAA, their software is NOT HIPAA compliant.

Now, if a vendor offers a BAA, it should be presented front and center in their benefits, terms or conditions, if not on their website homepage as part of their key features. If a vendor has taken the time and effort to make their infrastructure robust enough to meet HIPAA regulations, they’ll want to make it known to reassure healthcare organizations of their suitability to their particular needs.  

2. End-to-End Encryption

A key requirement of the HIPAA Security Rule is that sensitive patient data is encrypted end to end during its transmission. This means being encrypted during transit, i.e., when sent in an email or entered into a form, and at rest, i.e., within the data store in which it resides.

In light of this, any software that handles PHI should use strong encryption standards, such as:

  • Transport Layer Security (TLS – 1.2 or above): for secure transmission of PHI in email and text communications. 
  • AES (Advanced Encryption Standard) 256: the preferred encryption method for data storage as per HIPAA security standards, due to its strength.

3. Access Controls and User Authentication

One of the key threats to the privacy of patient data is access by unauthorized parties. This could be from employees within the organization who aren’t supposed to have access to PHI. In some, or even many, cases, this may come down to lax and overly generous access policies. However, this can result in the accidental compromise of PHI, affecting both a patient’s right to privacy and, in the event patient data is unavailable, operational capability. 

Alternatively, the exposure of PHI can be intentional. One on hand, it may be from employees working on behalf of other organizations, i.e., disgruntled employees about to jump ship to a competitor. More commonly, unauthorized access to patient data is perpetrated by malicious actors impersonating healthcare personnel. To prevent the unintended exposure of PHI, HIPAA compliant infrastructure, software and applications must support access control policies, such as:

  • Role-based access control (RBAC): the restriction of access to PHI based on their job responsibility in handling PHI, i.e.., an employee in billing or patient outreach. A healthcare organization’s security teams can configure access rights based on an employee’s need to handle patient data in line with their role in the company. 
  • Multi-factor authentication (MFA): this adds an extra layer of security beyond user names and passwords. This could include a one-time password (OTP) sent via email, text, or a physical security token. MFA is very diverse and can be scaled up to reflect a healthcare organization’s security posture. This could include also biometrics, such as retina and fingerprint scans, as well as voice verification.
  • Zero-trust security: a rapidly emerging security paradigm in which users are consistently verified, as per the resources they attempt to access. This prevents session hijacking, in which a user’s identity is trusted upon an initial login and verification. Instead, zero trust continually verifies a user’s identity.  
  • Robust password policies: another simple, but no less fundamental, component of user authentication is a company’s password policy. While conventional password policies emphasize complexity, i.e., different cases, numbers, and special characters, newer password policies, in contrast, emphasize password length. 

4. Audit Logs & Monitoring

A key HIPAA requirement is that healthcare organizations consistently track and monitor employee access to patient data. It’s not enough that access to PHI is restricted. Healthcare organizations must maintain visibility over how patient data is being accessed, transferred, and acted upon (copied, altered, deleted). This is especially important in the event of a security event when it’s imperative to pinpoint the source of a breach and contain its spread.

In light of this, HIPAA compliant software must:

  • Maintain detailed audit logs of all employee interactions with PHI.
  • Provide real-time monitoring and alerts for suspicious activity.
  • Support log retention for at least six years, as per HIPAA’s compliance requirements.

5. Automatic Data Backup & Disaster Recovery

Data loss protection (DLP) is an essential HIPAA requirement that requires organizations to protect PHI from loss, corruption, or disasters. With this in mind, a HIPAA-compliant software solution should provide:

  • Automated encrypted backups: real-time data backups, to ensure the most up-to-date PHI is retained in the event of a security breach.
  • Comprehensive disaster recovery plans: to rapidly restore data in case of cyber attack, power outage, or similar event that compromises data access.  
  • Geographically redundant storage: a physical safeguard that sees PHI. stored on separate servers in different locations, far apart from each other. So, if one server goes down or is physically compromised (fire, flood, power outage, etc.,) patient data can still be accessed. 

6. Secure Messaging and Communication Controls

For software that involves email, messaging, or telehealth, i.e., phone or video-based interactions, in particular, HIPAA regulations require:

  • End-to-end encryption: for all communications, as detailed above.
  • Access restrictions: policies that only enable those with the appropriate privileges to view communications containing patient data.
  • Controls for message expiration: automatically deleting messages after a prescribed time to mitigate the risk of unauthorized access.
  • Audit logs: to monitor the inclusion or use of patient data.

7. HIPAA Training & Policies

Even the most secure software can be compromised if its users aren’t sufficiently trained on how to use it. More specifically, the risk of a security breach is amplified if employees don’t know how to identify suspicious behavior and who to report it to if an event occurs. With this in mind, it’s prudent to look for software vendors that:

  • Offer HIPAA compliance and cyber safety awareness training for users.
  • Implement administrative safeguards, such as usage policy enforcement and monitoring.
  • Support customizable security policies to align with your organization’s compliance needs.

Shadow IT and HIPAA Compliance

Shadow IT is an instance of an application or system being installed and used within a healthcare organization’s network without an IT team’s approval. Despite its name, shadow IT is not as insidious as it sounds: it’s simply a case of employees unwittingly installing applications they feel will help them with their work. The implications, however, are that:

  1. IT teams are unaware of said application, and how data flows through it, so they can’t secure any PHI entered into it.
  2. The application may have known vulnerabilities that are exploitable by malicious actors. This is all the more prevalent with free and/or open-source software.

While discussing the issue of shadow IT in general, it’s wise to discuss the concept of “shadow AI” – the unauthorized use of artificial intelligence (AI) solutions within an organization without its IT department’s knowledge or approval. 

It’s easily done: AI applications are all the rage and employees are keen to reap the productivity and efficiency gains offered by the rapidly growing numbers of AI tools. Unfortunately, they fail to stop and consider the data security risks present in AI applications. Worse, with AI technology still in its relative infancy, researchers, vendors, and other industry stakeholders have yet to develop a unified framework for securing AI systems, especially in healthcare. 

Consequently, the risks of entering patient data into an AI system – particularly one that’s not been approved by IT – are considerable. The privacy policies of many widely-used AI applications, such as ChatGPT, state the data entered into the application, during the course of engaging with the platform, can be used in the training of future AI models. In other words, there’s no telling where patient data could end up – and how and where it could be exposed. 

The key takeaway here is that entering PHI into shadow IT and AI applications can pose significant risks to the security of patient data, and employees should only use solutions vetted, deployed, and monitored by their IT department. 

Best Practices for Choosing HIPAA Compliant Software

Now that you have a better understanding of how to evaluate software regarding HIPAA compliance, here are some best practices to keep in mind when selecting applications to facilitate your patient engagement efforts:

Look for a BAA: quite simply, having a BAA in place is an essential requirement of HIPAA-compliant software. So, if the vendor doesn’t offer one, move on.

Verify encryption standards: ensure the software encrypts PHI both at rest and in transit.

Test access controls: choose HIPAA-compliant software that allows you to restrict access to PHI based on an employee’s role within the organization. 

Review audit logging capabilities: HIPAA compliant software should track every PHI interaction. This also greatly assists in incident detection and reporting (IDR), as it enables security teams to pinpoint and contain cyber threats should they arise.

Ensure compliance support: knowing the complexities of navigating HIPAA regulations, a reputable software vendor should provide comprehensive documentation on configuring their solution to match the client’s security needs. Better yet, they should provide the option of cyber threat awareness and HIPAA compliance training services. 

Create a List of Software Vendors: combining the above factors, it’s prudent for healthcare organizations to compile a list of HIPAA compliant software vendors that possess the features and capabilities to adequately safeguard PHI.

Choosing HIPAA Compliant Software

Matching the right software to a company’s distinctive workflows and evolving needs is challenging enough. However, for healthcare companies, ensuring the infrastructure and applications within their IT ecosystem also meet HIPAA compliance standards requires another layer of, often complicated, due diligence. 

Failure to deploy a digital solution that satisfies the technical, administrative, and physical security measures required in a HIPAA compliant solution exposes your organization to the risk of suffering the repercussions of non-compliance. 

If select and deploy the appropriate HIPAA compliant software, in contrast, your options for patient and customer engagement are increased, and you’ll be able to include PHI in your communications to improve patient engagement and drive better health outcomes. Schedule a consultation with one of our experts at LuxSci to discuss whether the software in your IT ecosystem meets HIPAA regulations. and how we can assist you in ensuring your organization is communicating with patient and customers in a HIPAA compliant way.

AI-based Email Security Threats

How to Avoid AI-Based Email Security Threats

Artificial intelligence (AI) has been the hottest topic in technology for the past few years now, with a focus on how it’s transforming business and the way we work. While we’d seen glimpses of AI’s capabilities before, the release of ChatGPT (containing OpenAI’s groundbreaking GPT-3.5 AI model) put the technology’s limitless potential on full display. Soon, stakeholders in every industry looked to find ways to integrate AI into their organizations, so they could harness its huge productivity and efficiency benefits.

The problem? Hackers and bad actors are using AI too, and it’s only strengthening their ability to carry out data breaches, including AI-based email security threats. 

While AI brings considerable advantages to all types of businesses, unfortunately, its vast capabilities can be used for malicious purposes too. With their unparalleled ability to process data and generate content, cybercriminals can use a variety of AI tools to make their attacks more potent, increasing their potential to get past even the most secure safeguards. 

With all this in mind, this post discusses how AI is helping cyber criminals massively scale their efforts and carry out more sophisticated, widespread attacks. We’ll explore how malicious actors are harnessing AI tools to make AI-based email cyber attacks more personalized, potent, and harmful, and cover three of the most common threats to email security that are being made significantly more dangerous with AI. This includes phishing, business email compromise (BEC) attacks, and malware. We’ll also offer strategic insights on how healthcare organizations can best mitigate AI-enhanced email threats and continue to safeguard the electronic protected health information (ePHI) under their care. 

How Does AI Increase Threats To Email Security?

AI’s effect on email security threats warrants particular concern because it enhances them in three ways: by making email-focused attacks more scalable, sophisticated, and difficult to detect.

Scalability 

First and foremost, AI tools allow cybercriminals to scale effortlessly, enabling them to achieve exponentially more in less time, with few additional resources, if any at all. 

The most obvious example of the scalable capabilities of generative AI involves systems that can create new content from simple instructions, or prompts. In particular, large language models (LLMs), such as those found in widely used AI applications like ChatGPT, allow malicious actors to rapidly generate phishing email templates and similar content that can be used in social engineering attacks, with a level of accuracy in writing and grammar not seen before. Now, work that previously would take email cybercriminals hours can be achieved in mere seconds, with the ability to make near-instant improvements and produce countless variations.   

Similarly, should a social engineering campaign yield results, i.e., getting a potential victim to engage, malicious actors can automate the interaction through AI-powered chatbots, which are capable of extended conversations via email. This increases the risk of a cybercriminal successfully fooling an employee at a healthcare organization to grant access to sensitive patient data or reveal their login credentials so they can breach their company’s email system. 

Additionally, AI allows cybercriminals to scale their efforts by automating aspects of their actions, and gathering information about a victim, i.e., a healthcare organization before launching an attack. AI tools also can scan email systems, metadata, and publicly available information on the internet to identify vulnerable targets, and their respective security flaws. They can then use this information to pinpoint and prioritize high-value victims for future cyber attacks.

Sophistication

In addition to facilitating larger and more frequent cyber attacks, AI systems allow malicious actors to make them more convincing. As mentioned above, generative AI allows cybercriminals to create content quickly, and craft higher-quality content than they’d be capable of through their own manual efforts. 

Again, using phishing as an example, AI can refine phishing emails by eliminating grammatical errors and successfully mimicking distinct communication styles to make them increasingly indistinguishable from legitimate emails. Cybercriminals are also using AI to make their fraudulent communications more context-aware, referencing recent conversations or company events and incorporating data from a variety of sources, such as social media, to increase their perceived legitimacy.  

In the case of another common email attack vector, malware, AI can be used to create constantly evolving malware that can be attached to emails. This creates distinct versions of malware that are more difficult for anti-malware tools to stop.

More Difficult to Detect

This brings us to the third way in which AI tools enhance email threats: by making them harder to detect and helping them evade traditional security measures. 

AI-powered email threats can adapt to a healthcare organization’s cybersecurity measures, observing how its defenses, such as spam filters, flag and block malicious activity before automatically adjusting its behavior until it successfully bypasses them. 

After breaching a healthcare organization’s network, AI offers cybercriminals several new and enhanced capabilities that help them expedite the achievement of their malicious objectives, while making detection more difficult. 

These include:  

  • Content Scanning: AI tools can scan emails, both incoming and outgoing, in real-time to identify patterns pertaining to sensitive data. This allows malicious actors to identify target data in less time, making them more efficient and capable of extracting greater amounts of PHI.  
  • Context-Aware Data Extraction: similarly, AI can differentiate between regular text and sensitive data by recognizing specific formats (e.g., medical record numbers, insurance details, social security numbers, etc.)
  • Stealthy Data Exfiltration: analyzing and extracting PHI, login credentials, and other sensitive data from emails, while blending into normal network traffic. 
  • Distributed Exfiltration: instead of transferring large amounts of data at once, which is likely to trigger cyber defenses, hackers can use AI systems that slowly exfiltrate PHI in smaller payloads over time, better blending into regular network activity.

AI and Phishing

Phishing attacks involve malicious actors impersonating legitimate companies, or employees of a company, to trick victims into revealing sensitive patient data. Typical phishing attack campaigns rely on volume and trial and error. The more messages sent out by cybercriminals, the greater the chance of snaring a victim. Unfortunately, AI applications allow malicious actors to raise the efficacy of their phishing attacks in several ways.

First, AI allows scammers to craft higher-quality messaging. One of the limitations of phishing emails for healthcare companies is that they’re often easy to identify, since they are replete with mis-spelled words, poor grammar, and bad formatting. AI allows malicious actors to overcome these inadequacies and create more convincing messages that are more likely to fool healthcare employees.  

On a similar note, because healthcare is a critical industry, it’s consistently under threat from cybercriminals, which are also known as advanced persistent threats (APTs) or even cyber terrorists. By definition, such malicious actors often reside outside the US and English isn’t their first language. 

While, in the past, this may have been obvious, AI now provides machine translation capabilities, allowing cybercriminals to write messages in their native language, translating them to English, and refining them accordingly. Consequently,  scammers can craft emails with fewer tell-tale signs that healthcare organizations can train their employees to recognize. 

Additionally, as alluded to earlier, AI models can produce countless variations of phishing messages, significantly streamlining the trial-and-error aspect of phishing campaigns and allowing scammers to discover which messaging works best in far less time. 

Lastly, as well as enhancing the efficacy of conventional phishing attacks, AI helps improve spear phishing campaigns, a type of fraudulent email that targets a particular organization or employee who works there, as opposed to the indiscriminate, “scatter” approach of regular phishing.

While, traditionally, spear phishing requires a lot of research, AI can scrape data from a variety of sources, such as social media, forums, and other web pages, to automate a lot of this manual effort. This then allows cybercriminals to carry out the reconnaissance required for successful attacks faster and more effectively, increasing their frequency and, subsequently, their rate of success. 

AI and Business Email Compromise (BEC) Attacks

A business email compromise (BEC) is a type of targeted email attack that involves cybercriminals gaining access to or spoofing (i.e., copying) a legitimate email account to manipulate those who trust its owner into sharing sensitive data or executing fraudulent transactions. BEC attacks can be highly effective and, therefore, damaging to healthcare companies, but they typically require extensive research on the target organization to be carried out successfully. However, as with spear phishing, AI tools can drastically reduce the time it takes to identify potential targets and pinpoint possible attack vectors. 

For a start, cybercriminals can use AI to undertake reconnaissance tasks in a fraction of the time required previously. This includes identifying target companies and employees whose email addresses they’d like to compromise, generating lists of vendors that do business with said organization, and even researching specific individuals who are likely to interact with the target.  

Once a target is acquired, malicious actors can use AI tools in a number of terrifying ways to create more convincing messaging. By analyzing existing emails, AI solutions can quickly mimic the writing style of the owner of the compromised account, giving them a better chance of fooling the people they interact with. 

By the same token, they can use information gleaned from past emails to better contextualize fraudulent messages, i.e., adding particular information to make subsequent requests more plausible. For example, requesting data or login credentials in relation to a new project or recently launched initiative. 

Taking this a step further, cybercriminals could supplement a BEC attack with audio or video deepfakes created by AI to further convince victims of their legitimacy. Scammers can use audio deepfakes to leave voicemails or, if being especially brazen, conduct entire phone conversations to make their identity theft especially compelling.

Meanwhile, scammers can create video deepfakes that relay special instructions, such as transferring money, and attach them to emails. Believing the request came from a legitimate source, there’s a chance employees will comply with the request, boosting the efficacy of the BEC attack in the process. Furthermore, the less familiar an employee is with attacks of this kind, the more likely they are to fall victim to them.   

In short, AI models make it easier to carry out BEC attacks, which makes it all the more likely for cybercriminals to attempt them.

AI and Malware 

Malware refers to any kind of malicious software (hence, “mal(icous) (soft)ware”), such as viruses, Trojan horses, spyware, and ransomware, all of which can be enhanced by AI in several ways.

Most notable is AI’s effect on polymorphic malware, which has the ability to constantly evolve to bypass email security measures, making malicious attachments harder to detect. Malware, as with any piece of software, carries a unique digital signature that can be used to identify it and confirm its legitimacy. Anti-malware solutions traditionally use these digital signatures to flag instances of malware, but the signature of polymorphic malware changes as it evolves, allowing it to slip past email security measures. 

While polymorphic malware isn’t new, and previously relied on pre-programmed techniques such as encryption and code obfuscation, AI technology has made it far more sophisticated and difficult to detect. Now, AI-powered polymorphic malware can evolve in real-time, adapting in response to the defense measures it encounters. 

AI can also be used to discover Zero Day exploits, i.e., previously unknown security flaws, within email and network systems in less time. Malicious actors can employ AI-driven scanning tools to uncover vulnerabilities unknown to the software vendor at the time of its release and exploit them before they have the opportunity to release a patch.

How To Mitigate AI-Based Email Security Threats

While AI can be used to increase the effectiveness of email attacks, fortunately, the fundamentals of mitigating email threats remains the same; organizations must be more vigilant and diligent in following email security best practices and staying on top of the latest threats and tools used by cybercriminals. 

Let’s explore some of the key strategies for best mitigating AI-based email threats and better safeguarding the ePHI within your organization.

  • Educate Your Employees: ensure your employees are aware of how AI can enhance existing email threats. More importantly, demonstrate what this looks like in a real-world setting, showing examples of AI-generated phishing and BEC emails compared to traditional messages, what a convincing deepfake looks and sounds like, instances of polymorphic malware, and so on.

    Additionally, conduct regular simulations, involving AI-enhanced phishing, BEC attacks, etc., as part of your employees’ cyber threat awareness training. This gives them first-hand experience in identifying AI-driven email threats, so they’re not caught off-guard when they encounter them in real life. You can schedule these simulations to occur every few months, so your organization remains up-to-date on the latest email threat intelligence.
     
  • Enforce Strong Email Authentication Protocols: ensure that all incoming emails are authenticated using the following:
    • Sender Policy Framework (SPF): verifies that emails are sent from a domain’s authorized servers, helping to prevent email spoofing. 
    • DomainKeys Identified Mail (DKIM): preserves the integrity of the message’s contents by adding a cryptographic signature, mitigating compromise during transit, e.g., stealthy or distributed data exfiltration. 
    • Domain-based Message Authentication, Reporting & Conformance (DMARC): enforces email authentication policies, helping organizations detect and block unauthorized emails that fail SPF or DKIM checks.

By verifying sender legitimacy, preventing email spoofing, and blocking fraudulent messages, these authentication protocols are key defenses against AI-enhanced phishing and business email compromise (BEC) attacks.

  • Access Control: while AI increases the risk of PHI exposure and login credential compromise, the level of access that a compromised or negligent employee has to patient data is another problem entirely. Subsequently, data breaches can be mitigated by ensuring that employees only have access to the minimum amount of data required for their job roles, i.e. role-based access control (RBAC). This reduces the potential impact of a given data breach, as it lowers the chances that a malicious actor can extract large amounts of data from a sole employee.
  • Implement Multi-Factor Authentication (MFA): MFA provides an extra layer of protection by requiring users to verify their identity in multiple ways. So, even in the event that a cybercriminal gets ahold of an employee’s login credentials, they still won’t have sufficient means to prove they are who they claim to be.
  • Establish Incident Response and Recovery Plans: unfortunately, by making them more scalable, sophisticated, and harder to detect, AI increases the inevitability of security breaches. This makes it more crucial than ever to develop and maintain a comprehensive incident response plan that includes strategies for responding to AI-enhanced email security threats.

    By establishing clear protocols regarding detection, reporting, containment, and recovery, your organization can effectively mitigate, or at least minimize, the impact of email-based cyber attacks enhanced by AI. Your incident response plan should be a key aspect of your employee cyber awareness training, so your workforce knows what to do in the event of a security incident. 

Get Your Copy of LuxSci’s 2025 Email Cyber Threat Readiness Report

To learn more about healthcare’s ever-evolving email threat landscape and how to best ensure the security and privacy of your sensitive data, download your copy of LuxSci’s 2025 Email Cyber Threat Readiness Report. 

You’ll discover:

  • The latest threats to email security in 2025, including AI-based attacks
  • The most effective strategies for strengthening your email security posture
  • The upcoming changes to the HIPAA Security Rule and how it will impact healthcare organizations.

Grab your copy of the report here and start increasing your company’s email cyber threat readiness today.