LuxSci

What Is Healthcare Marketing Compliance for Medical Practices?

Healthcare Marketing Compliance

Healthcare marketing compliance involves strict adherence to HIPAA authorization requirements, state privacy regulations, and industry advertising standards when using patient information for promotional purposes. Medical practices must obtain written patient consent before incorporating protected health information into testimonials, case studies, or targeted advertising campaigns, while ensuring all business associate agreements with promotional vendors include appropriate data protection clauses and breach notification procedures.

 

Medical practices pursue new patient acquisition through promotional activities while protecting existing patient privacy rights. Marketing departments frequently discover that their most compelling promotional ideas involve patient stories, treatment outcomes, or demographic data that require extensive legal review before implementation.

Written Authorization for Healthcare Marketing Compliance

Patient authorization must precede any use of PHI in promotional materials, specifying exactly which information will be disclosed, identifying all recipients of promotional communications, and explaining patient rights to revoke consent. These forms require expiration dates, signature requirements, and plain language descriptions that patients can easily comprehend without legal expertise.

 

Organizations cannot combine promotional authorization with treatment consent forms or condition medical services on patients agreeing to promotional uses of their information. Patients who decline promotional authorization must receive identical treatment quality and cannot experience discrimination or reduced service levels because of their privacy choices.

State Privacy Laws

California’s Consumer Privacy Act, Texas Medical Records Privacy Act, and other state regulations impose requirements that exceed federal HIPAA standards for promotional activities. Some states require opt-in consent for all promotional communications, while others mandate specific disclosure language or waiting periods before promotional authorization becomes effective.

 

Multi-state healthcare systems must comply with the most restrictive state requirements across all their operations to avoid violating patient privacy laws. Organizations operating in states with enhanced privacy protections cannot rely solely on healthcare marketing compliance but must incorporate additional state-specific requirements into their promotional practices.

Digital Advertising Platforms

Social media advertising, email promotional platforms, and website analytics tools frequently request access to patient contact information, demographic data, or behavioral tracking that falls under privacy protection laws. Healthcare marketing compliance requires careful evaluation of third-party technology vendors to ensure they provide appropriate business associate agreements and data protection measures.

 

Retargeting campaigns that track patient website visits or online behavior present particular risks when healthcare organizations use advertising pixels, conversion tracking, or audience segmentation tools. These technologies may inadvertently transmit protected information to advertising networks without proper authorization or contractual protections.

Vendor Management Protects Marketing Activities

Advertising agencies, promotional consultants, and marketing service providers need business associate agreements before accessing any patient information for campaign development or audience analysis. These contracts must specify permitted uses of protected data, establish security requirements, and outline breach notification procedures when privacy violations occur.

 

Organizations retain full liability for vendor compliance failures, making thorough due diligence essential before selecting promotional partners. Healthcare marketing compliance programs should include vendor auditing procedures, contract review protocols, and performance monitoring systems to ensure privacy protection throughout promotional activities.

Content Creation Within Privacy Protection Guidelines

Patient testimonials, success stories, and case studies require detailed authorization forms that specify exactly how patient information will be used across different promotional channels and time periods. De-identification offers an alternative approach but requires removing all identifying elements according to HIPAA standards, including dates, locations, and demographic details that could reveal patient identity.

 

Photography and video content featuring patients or their treatment areas need separate consent documentation covering future use, distribution methods, and duration of permission. Healthcare marketing compliance includes behind-the-scenes content, facility tours, and staff interviews that might inadvertently capture patient information in background elements.

Staff Education Prevents Privacy Violations

Marketing personnel, communications staff, and external vendors need education about distinguishing between permissible healthcare communications and restricted promotional activities requiring authorization. Training programs should cover identification of protected information, authorization requirements, and escalation procedures for situations requiring legal review.

 

Updates cover new promotional channels, technology platforms, and changing regulatory interpretations that affect healthcare marketing compliance standards. Organizations benefit from establishing clear approval workflows for promotional materials and designating privacy personnel to review campaigns before launch.

Enforcement Actions Shape Compliance Priorities

Recent OCR investigations have targeted healthcare organizations using patient information in social media posts, email campaigns, and website content without proper authorization. These enforcement actions show increasing federal attention to promotional activities and willingness to impose financial penalties for privacy violations.

 

Settlement agreements frequently require organizations to implement comprehensive compliance programs, conduct staff training, and submit to monitoring for extended periods. Healthcare marketing compliance programs that consider these enforcement priorities can minimize violation risks and avoid costly regulatory investigations.

Get in touch

Find The Best Solution For Your Organization

Talk To An Expert & Get A Quote




A member of our staff will reach out to you

Get Your Free E-Book!

LuxSci High Email Deliverability Best Practices Paper

What you’ll learn:

Enter your email to download now!

We respect your privacy. No spam, ever.

Related Posts

How to Set Up HIPAA Compliant Email

How to Set Up HIPAA Compliant Email

Learning how to set up HIPAA compliant email involves selecting appropriate secure email platforms, configuring encryption settings, implementing access controls, and establishing proper business associate agreements with service providers. Healthcare organizations must ensure their email systems meet all HIPAA Security Rule requirements before transmitting any protected health information electronically. The setup process requires careful planning of security configurations, user authentication protocols, and audit logging capabilities that protect patient data throughout transmission and storage.

Platform Selection and Service Provider Evaluation

Choosing the right email service provider is the first step in establishing how to set up HIPAA compliant email. Healthcare organizations evaluating providers must verify their ability to sign comprehensive business associate agreements that specify exactly how patient information will be protected during transmission and storage. The provider’s data centers should maintain appropriate physical security measures, including biometric access controls, environmental monitoring, and redundant power systems that ensure continuous email availability without compromising security.

Service provider certifications provide valuable insight into their security capabilities and compliance experience. SOC 2 Type II audits demonstrate that providers maintain appropriate controls for security, availability, and confidentiality of customer data. HITRUST certification specifically addresses healthcare security requirements and indicates that the provider understands the unique compliance challenges facing healthcare organizations. These certifications should be current and available for review during the vendor selection process.

Geographic data residency requirements may influence provider selection depending on organizational policies and patient preferences. Some healthcare organizations prefer email providers that maintain all servers within United States borders to simplify compliance with various state privacy laws. International providers may offer cost advantages but require additional due diligence to ensure their data handling practices meet American healthcare privacy standards.

Scalability considerations affect long-term success when healthcare organizations experience growth or changes in email usage patterns. Email systems should accommodate increasing numbers of users, higher message volumes, and integration with additional healthcare applications without requiring complete system replacements. Healthcare organizations benefit from understanding how to set up HIPAA compliant email systems that can adapt to changing operational needs while maintaining security standards.

Security Configuration and Encryption Setup

Encryption configuration forms the cornerstone of secure healthcare email systems. Advanced Encryption Standard (AES) 256-bit encryption should activate automatically for all outgoing messages containing patient information, eliminating the risk of staff forgetting to enable security features manually. Transport Layer Security (TLS) 1.2 or higher protocols must secure all connections between email servers, preventing message interception during transmission across public internet networks.

Digital certificate management ensures that email recipients can verify sender authenticity while maintaining message integrity during transmission. Healthcare organizations learning how to set up HIPAA compliant email need certificate authorities that provide reliable identity verification services for their email communications. Certificate renewal processes should operate automatically to prevent service interruptions that could compromise email security or availability.

Key management protocols protect encryption keys from unauthorized access while ensuring legitimate users can decrypt necessary patient communications. Encryption keys should rotate automatically at predetermined intervals, with secure backup procedures that prevent data loss if primary key storage systems fail. Healthcare organizations must maintain documented procedures for key recovery that balance security requirements with operational necessity.

Message archiving configurations must preserve encrypted email communications for required retention periods while maintaining searchability for audit and legal discovery purposes. Archive systems need the same encryption protections as active email systems, with access controls that limit retrieval to authorized personnel. Backup procedures should test data recovery capabilities while ensuring archived communications remain encrypted throughout the backup and restoration process.

User Access Controls and Authentication

Multi-factor authentication provides essential protection for healthcare email accounts containing patient information. Users should provide at least two forms of identification before accessing their email accounts, typically combining passwords with mobile device verification codes, biometric scans, or hardware security tokens. Authentication systems must integrate smoothly with existing healthcare information systems to avoid creating workflow disruptions that might encourage staff to circumvent security measures.

Role-based access permissions ensure that healthcare staff can only view patient communications relevant to their job responsibilities. Physicians need different access levels compared to billing staff or administrative personnel, with granular controls that prevent unauthorized viewing of patient information outside individual care relationships. Access controls should automatically adjust when staff members change roles within the organization or transfer between departments with different patient access requirements.

Session management protocols track user activities within email systems and automatically terminate inactive sessions to prevent unauthorized access from unattended workstations. Session timeout periods should balance security requirements with operational efficiency, allowing sufficient time for healthcare staff to compose thoughtful patient communications without creating security vulnerabilities. Login attempt monitoring detects potential account compromise situations and triggers appropriate security responses.

Password policies must enforce requirements while avoiding overly burdensome rules that encourage staff to write down passwords or reuse credentials across multiple systems. Password managers can help healthcare staff maintain unique, complex passwords for their email accounts while integrating with single sign-on systems that reduce authentication friction. Organizations mastering how to set up HIPAA compliant email often implement password policies that emphasize length over complexity to improve both security and usability.

Business Associate Agreements and Legal Requirements

Comprehensive business associate agreements define the legal framework for email service provider relationships with healthcare organizations. These agreements must specify exactly how the provider will protect patient information, what uses and disclosures are permitted, and detailed procedures for reporting security incidents to the healthcare organization. Agreement terms should address data retention requirements, geographic restrictions on data storage, and procedures for returning or destroying patient information when business relationships terminate.

Liability allocation clauses protect healthcare organizations from financial exposure when email security incidents occur due to provider negligence or system failures. Insurance requirements ensure that email service providers maintain adequate cyber liability coverage to address potential damages from data breaches or privacy violations. Healthcare organizations should verify that provider insurance policies specifically cover HIPAA-related claims and regulatory penalties.

Audit rights allow healthcare organizations to verify that their email providers maintain appropriate security controls and comply with business associate agreement terms. These rights should include access to security audit reports, penetration testing results, and compliance certifications relevant to healthcare data protection. Regular audit schedules help healthcare organizations demonstrate due diligence in vendor oversight during regulatory inspections or legal proceedings.

Termination procedures specify how patient information will be handled when email service relationships end, whether due to contract expiration, service dissatisfaction, or provider business closure. Data return requirements should include specific timelines for transferring patient communications to new email systems, with verification that all copies of patient information are securely destroyed from provider systems. Those understanding how to set up HIPAA compliant email recognize that termination planning prevents patient information from remaining in unsupported systems after service relationships end.

Implementation Planning and Testing

Staff training programs must prepare healthcare workers to use secure email systems effectively while maintaining patient privacy throughout all communications. Training should cover how to recognize secure email platforms, procedures for verifying recipient identities before sending patient information, and guidelines for determining what health information is appropriate for email transmission. Healthcare staff need clear decision-making frameworks that help them choose between email communication and more secure alternatives like telephone calls or encrypted patient portals.

Pilot testing allows healthcare organizations to identify potential issues before implementing email systems organization-wide. Pilot programs should include representative users from different departments and roles to ensure the email system meets diverse operational needs. Testing scenarios should verify that encryption activates properly, access controls function as designed, and audit logging captures all necessary security events for compliance monitoring.

Integration planning addresses how secure email systems will connect with existing electronic health records, practice management software, and other healthcare applications. Data flow mapping helps identify potential security gaps where patient information might transmit between systems without appropriate encryption protection. Healthcare organizations learning how to set up HIPAA compliant email must ensure that all system integrations maintain the same security standards as the primary email platform.

Rollout schedules should phase email system implementation to minimize workflow disruptions while allowing adequate time for user adaptation and troubleshooting. Support procedures must provide healthcare staff with readily available assistance during the transition period when questions about secure email usage are most frequent. Documentation requirements include maintaining records of all configuration settings, security tests, and staff training activities that show compliance with HIPAA requirements.

Monitoring and Maintenance Procedures

When learning how to set up HIPAA compliant email, it is important to know that audit logging systems must capture detailed records of all email activities, including message sending and receiving times, user login attempts, and administrative actions within the email system. Log retention policies should maintain audit records for required periods while ensuring that log storage systems have the same security protections as the primary email platform. Healthcare organizations need procedures for reviewing audit logs to identify potential security incidents or unauthorized access attempts.

Security monitoring tools should provide real-time alerts when unusual email activities occur, such as large volumes of outbound messages, login attempts from unusual locations, or repeated authentication failures. Automated monitoring reduces the burden on healthcare IT staff while ensuring that potential security incidents receive prompt attention. Alert thresholds must balance sensitivity with operational practicality to avoid overwhelming staff with false alarms.

Performance monitoring tracks email system availability, message delivery times, and user satisfaction to ensure that security measures do not create unacceptable operational barriers. Healthcare organizations mastering how to set up HIPAA compliant email balance security requirements with usability needs, recognizing that overly complex systems may encourage staff to find workarounds that compromise patient privacy. Regular performance assessments help identify opportunities to improve both security and user experience within secure email systems.

G2 Reports

LuxSci Earns 11 Badges in G2 Fall 2025 Reports, Including Best Support and Momentum Leader

We’re happy to share that LuxSci has once again been recognized for excellence in the G2 Fall 2025 Reports! Based entirely on verified customer reviews, LuxSci earned 11 G2 badges this season, highlighting our continued commitment to providing exceptional support, driving ROI for our customers, and delivering the best products.

 

From Best Estimated ROI to Momentum Leader, our performance on G2 is a direct reflection of the trust and success of our customers. Let’s take a closer look at what these new accolades mean and why they matter.

What Is G2 and Why Does It Matter?

G2.com is a trusted platform for peer-to-peer business software reviews. G2 publishes quarterly reports that analyze software companies based on verified customer feedback and real-world performance data. For the latest G2 reports, we’re honored to have earned 11 badges for Fall 2025.

Here’s What LuxSci Earned in Fall 2025

LuxSci was awarded a total of 11 badges across multiple categories. These honors reflect customer satisfaction, platform momentum, return on investment, and the quality of support we provide.

LuxSci’s G2 Fall 2025 Badges include:

 

  • Best Support (Secure Email Gateway)
  • Easiest Admin (Email Security)
  • Best Estimated ROI (Email Security)
  • Best Meets Requirements (Secure Email Gateway)
  • Momentum Leader (Multiple Categories)
  • High Performer (Email Encryption)
  • High Performer (Secure Email Gateway)
  • High Performer (Email Security)
  • Users Most Likely to Recommend (Secure Email Gateway)
  • Easiest To Do Business With (Email Encryption)
  • Easiest Setup (Email Encryption)

Why These Badges Matter

Let’s break down a few of the key categories and why they’re worth calling out:

Best Support

This badge shows we’re not just responsive—we’re reliable, helpful, and proactive. Our support team works around the clock to ensure customers feel heard and empowered. It’s a core part of our offering and overall customer experience.

Momentum Leader

This badge is awarded to companies showing significant growth in customer satisfaction, web presence, and employee growth. It means we’re not standing still—we’re scaling smartly, with our customers and partners in mind.

Best Estimated ROI

This one’s big. It means LuxSci offers exceptional value. Customers see real results that justify the investment. This includes secure email with 98% deliverability rates that truly drive better engagement for your healthcare communications and campaigns.

Built for Security and Compliance

At LuxSci, we don’t just build HIPAA compliant, enterprise-grade secure email and marketing tools—we build trusted relationships with our customers and partners. Our focus continues to be:

 

  • Protecting sensitive data with the highest levels of security and compliance
  • Building the best products, so customers have peace of mind
  • Providing unmatched customer support, every step of the way

We’re Not Slowing Down Anytime Soon

With security threats constantly evolving and compliance demands increasing, the need for secure, HIPAA compliant email and communications has never been greater. Whether you’re in healthcare, or regulated industries like financial services, LuxSci is here to ensure your communications stay secure, high-performing, and supported.

 

We’re proud to serve a growing base of professionals who rely on LuxSci every day to keep their sensitive data secure. Want to see what the buzz is about?

 

Explore LuxSci on G2

 

Contact us today to see how we can help you!

Business Associate Agreement

Understanding Business Associate Agreements (BAAs) and Shared Responsibility

Modern-day healthcare organizations rely on a growing array of partners and vendors to provide them with the tools they need to effectively serve patients and customers. 

 

However, while new digital solutions and healthcare ecosystems often result in greater productivity and efficiency, they also increase the number of third parties a company must communicate with and share protected health information (PHI), requiring a business associate agreement (BAA). Unfortunately, this increases the risk of PHI being exposed, as it increases a healthcare organization’s supply chain network and the number of external organizations with access to their data, significantly raising the risk of a security breach. 

 

This is where the concept of shared responsibility comes in. 

 

In this article, we explore the shared responsibility model for data security, explaining the concept, the role of a BAA in shared responsibility, and why healthcare companies need to know how it works and where it factors into their HIPAA compliance efforts. 

What Is The Shared Responsibility Model? 

Shared responsibility is a core data security principle that divides the responsibility for protecting data between a company that collects the data and a vendor that supplies the infrastructure or systems used to process said data.

 

The shared responsibility model grew in prominence as more companies moved to cloud-based environments and applications. In the past, when companies kept their systems and data onsite, they had more control over who could access their data and, subsequently, a better ability to mitigate data security risks.

 

However, in adopting cloud-based infrastructure and applications, companies have to process and store their data in the cloud – often in shared infrastructure with other vendors using the same cloud – which consequently shifts some of the responsibility of information security to the cloud service provider (CSP) itself. This marked a profound shift in the way data was handled, transmitted, and stored – necessitating an evolved approach to data security. 

 

This fundamental shift in the way companies consume infrastructure and use apps ushered in the shared responsibility model: Where the cloud vendor provides the infrastructure or application, including HIPAA compliant and high secure environments, but it’s still the responsibility of the client to configure and use it securely. 

Business Associate Agreements (BAAs) and Shared Responsibility

By detailing the respective responsibilities of healthcare companies or Covered Entities (CEs) and their vendors or Business Associates (BAs) in securing PHI, a Business Associate Agreement is a prime example of shared responsibility. 

 

For example, the Business Associate shoulders the responsibility of providing the data safeguards required by HIPAA to secure patient data, such as infrastructure, encryption, audit logging, and even physical onsite security.

 

The Covered Entity, meanwhile, is responsible for conducting risk assessments, defining access control policies and processes, configuring services accordingly, workforce training, and continuous monitoring.

Additionally, both parties have the obligation to report security incidents to each other, as well as being independently accountable to the U.S. Department of Health and Human Services (HHS).

Why Shared Responsibility Is Essential for HIPAA Compliance

For healthcare companies, having a firm grasp of the shared responsibility model for safeguarding and securing PHI, and how they fit within your overall security posture is essential (for two key reasons).  

Security Gaps

Firstly, clearly understanding the shared responsibility decreases the likelihood of security gaps. If CEs are under the impression that the vendor handles all aspects of data security, they won’t be as vigilant. They’ll be less inclined to configure services, educate their staff accordingly, pay appropriate attention to vendor security alerts, etc. 

 

But the same is also true for BAs: If they assume their client does most of the heavy lifting in securing the data disclosed to them, they could be remiss in their duties to protect it. Without shared responsibility, each side simply assumes the other is covering a safeguard, opening the door for security gaps that malicious actors can exploit.

 

Fortunately, by detailing both parties’ (CEs and BAs) responsibilities and liabilities regarding data protection, a BAA removes this ambiguity and, more importantly, reduces the risk of security gaps. It’s critical to know the details and work with vendors building products for compliance versus implementing a tick-box approach to compliance that places too much burden on the CE.

Covered Entities (CEs) Are Ultimately Accountable

Subsequently, the second reason why it’s essential for CEs to understand the shared responsibility model, and increase their cybersecurity readiness accordingly, is that it’s the CE that’s ultimately held accountable for data breaches. 

 

Mistakenly thinking that a BAA automatically makes them compliant may result in healthcare companies underinvesting in training, monitoring, and incident response. Conversely, understanding that even with a BAA in place, they’re the ones primarily accountable for protecting PHI gives them a greater sense of urgency to properly implement HIPAA compliant security measures. 

The Covered Entity’s Role Within Shared Responsibility

Let’s look at the ways that healthcare companies have to hold up their end in the shared responsibility model. 

Choose Compliance-Conscious Vendors 

First and foremost, companies have to choose the right vendors to supply them with HIPAA compliant services and solutions.

 

Look for companies that market themselves as HIPAA compliant and display a detailed understanding of HIPAA requirements, particularly the HIPAA Security Rule. Do your due diligence and perform deeper dives on potential vendors, researching their stated security features, reviews from existing clients, whether they have certifications like HITRUST – and if they’ve been involved in any data breaches. 

 

Naturally, a core prerequisite of being a HIPAA compliant vendor is being willing to sign a BAA, so you can immediately rule out any vendors not willing to do so. For instance, some healthcare companies may assume they can use widely adopted solutions such as SendGrid, Mailchimp, but they don’t offer a BAA. 

 

Once you’ve confirmed a vendor offers a BAA, look through it to establish its terms and determine if it covers the services you’re interested in. 

Configuration 

Another core component of shared responsibility is comprehensive configuration management. While the BA’s responsibility is to provide a secure solution that satisfies HIPAA requirements, it’s the CE’s responsibility to configure it securely to fit within their IT ecosystem. 

Features that often require configuration include: 

 

  • Access control: Role-based access, Zero Trust, Multi-Factor Authentication (MFA).
  • Encryption settings: Enabling encryption, choosing encryption type, enforcing forced TLS, enabling storage encryption.
  • Feature restrictions: Disabling default configurations that enable integration with non-compliant tools. 
  • Audit logging: Enabling audit logging and configuring log formats.
  • Retention settings: How long to retain audit logs and who is permitted to review them.

Finally, establishing a patch management strategy, i.e., when and how your organization applies software updates, is an important element of configuration.  While the vendor must release updates to fix security vulnerabilities discovered in their solutions, it’s up to healthcare companies to deploy the patches. 

Training

Regardless of how many security features a vendor bakes into their solutions, once deployed by a healthcare company, the tool is only as secure as the practices of their least security-conscious employee. Consequently, companies must train their staff on how to properly use a solution to process protected health information and sensitive data. The more an employee is required to handle PHI, the more thorough and frequent their training should be. 

 

Key aspects of comprehensive cybersecurity training include:

 

  • Common cyber threats: what the most prevalent cyber threats are and how to recognize them.
  • Incident response: how to report a suspected security incident, i.e., who to contact and when. 
  • Specific solution training: how to securely use systems that process PHI
  • Scope awareness: knowing which services within your organization’s IT ecosystem are HIPAA-compliant and which are not

Reporting 

Although both healthcare companies and BAs have notification obligations to the HHS in the event of a data breach involving PHI, it’s the CE that bears most of the investigative burden. 

 

Firstly, while a BA may report a security incident, it’s the CE’s responsibility to conduct a risk assessment to determine the probability of compromise of PHI, assess risk, and determine whether an official notification of a breach to HHS is necessary.

 

Secondly, BAs must notify the CE without unreasonable delay and no later than 60 days after discovery. Although BAs often wait to complete internal investigations before notifying the CE, the CE’s 60-day clock starts upon the BA’s discovery, not upon the BA’s report. Therefore, BA delays can create compliance risks for the CE.

 

To prevent this, where possible, you can include stricter contractual reporting timelines in the BAAs. This constantly keeps your company in the loop, ensuring you have sufficient lead time to complete your own investigations and your HIPAA-regulated deadlines.

LuxSci – Secure Healthcare Communications

Developed specifically to fulfil the stringent regulatory and ever-evolving data security needs of the healthcare sector, LuxSci’s secure email, text, marketing and forms solutions help companies protect PHI and personalize communications.  

 

Equally as importantly, instead of leaving you to “figure it out” – pushing additional responsibility back onto your company – LuxSci has a reputation for the best customer support in the business, offering onboarding, detailed documentation, secure default configurations, and ongoing support to help navigate the murky waters of HIPAA compliance, while getting best-in-class performance out of your solution.

 

Contact LuxSci today to learn more or get a demo.

How to Send HIPAA Compliant Emails

How to Send HIPAA Compliant Emails

Learning how to send HIPAA compliant emails requires understanding encryption standards, authentication protocols, and business associate agreements that protect patient health information during electronic transmission. Healthcare providers must implement safeguards when communicating electronically about patients, ensuring that all email communications meet HIPAA Security Rule requirements for protecting electronic protected health information. Standard consumer email services like Gmail or Outlook cannot guarantee the security measures necessary for healthcare communications, making specialized secure email platforms essential for organizations handling patient data.

Encryption Requirements for Healthcare Email

End-to-end encryption is the foundation for secure healthcare email communications, protecting patient information from unauthorized access during transmission and storage. Healthcare organizations learning how to send HIPAA compliant emails need email systems that encrypt messages using Advanced Encryption Standard (AES) 256-bit encryption or equivalent security protocols before sending communications across public internet networks. The encryption process must protect both the email content and any attachments containing protected health information, ensuring that even if messages are intercepted, the patient data remains unreadable to unauthorized parties.

Message encryption should activate automatically for all healthcare communications rather than requiring manual activation by individual users. This automatic encryption prevents inadvertent transmission of unprotected patient information when staff members forget to activate security features manually. Healthcare email systems also need secure key management protocols that protect encryption keys from unauthorized access while ensuring that legitimate recipients can decrypt and read necessary patient communications.

Transport layer security protocols provide protection during email transmission, creating secure connections between email servers and preventing message interception during delivery. Healthcare organizations should verify that their email providers use TLS 1.2 or higher encryption standards for all message transmissions. Certificate-based authentication adds another security layer by verifying the identity of email recipients before allowing message delivery, preventing misdirected emails containing patient information from reaching incorrect recipients.

Authentication and Access Controls

Multi-factor authentication is a security requirement for healthcare email systems, ensuring that only authorized users can access accounts containing patient communications. Healthcare staff need to provide at least two forms of identification before accessing secure email accounts, combining passwords with mobile device codes, biometric verification, or hardware security tokens. This authentication process protects against unauthorized account access even if passwords are compromised through data breaches or social engineering attacks.

User access controls must reflect the principle of least privilege, granting healthcare staff access only to email communications necessary for their job functions. Physicians need different access levels compared to administrative staff, with role-based permissions preventing unauthorized viewing of patient information outside individual staff members’ care responsibilities. Email systems should maintain detailed audit logs tracking who accesses patient communications, when access occurs, and what actions users perform with protected health information.

Automatic session timeouts provide security by logging users out of email systems after predetermined periods of inactivity. These timeouts prevent unauthorized access when staff members step away from their workstations without properly securing their accounts. Password complexity requirements and password updates strengthen authentication security, though healthcare organizations must balance security requirements with usability to prevent staff from circumventing security measures due to overly complex requirements.

Session management protocols should track concurrent login attempts and prevent multiple simultaneous access sessions for individual user accounts. This monitoring helps detect potential account compromises when unusual access patterns occur, such as logins from multiple geographic locations within short time periods. Email systems need clear protocols for immediately revoking access when staff members leave the organization or when security breaches are detected.

Business Associate Agreements and Compliance

Healthcare organizations must establish comprehensive business associate agreements with their email service providers before transmitting any patient information through electronic communications. These legal agreements define the responsibilities and obligations of both parties regarding protected health information, specifying how the email provider will protect patient data, what uses and disclosures are permitted, and how security incidents will be reported to the healthcare organization. The agreements must cover encryption requirements, data retention policies, and procedures for returning or destroying patient information when business relationships end.

Vendor due diligence processes help healthcare organizations evaluate email service providers to ensure they understand how to send HIPAA compliant emails while meeting all regulatory requirements. This evaluation includes reviewing security certifications, examining data center facilities and security controls, and verifying the provider’s experience with healthcare industry regulations. Healthcare organizations should require proof of cyber liability insurance, incident response capabilities, and security auditing from their email service providers.

Compliance monitoring requires healthcare organizations to conduct periodic assessments of their email security measures and vendor performance. These assessments verify that encryption standards remain current, access controls function properly, and audit logging captures all necessary security events. Healthcare organizations must maintain documentation demonstrating their compliance efforts, including training records, security policies, and incident response procedures related to email communications.

Risk assessments help identify potential vulnerabilities in email security systems and guide updates to security measures as threats evolve. Healthcare organizations should review their email compliance programs annually or whenever changes occur to their operations, technology systems, or regulatory requirements. Documentation of these assessments provides evidence of due diligence in protecting patient information during regulatory audits or security investigations.

Implementation Best Practices

Staff training programs must educate healthcare workers about proper email security practices and when it is appropriate to include patient information in electronic communications. Healthcare staff learning how to send HIPAA compliant emails need clear guidelines about what patient information can be discussed via email versus what requires telephone calls or in-person meetings. Training should cover how to recognize secure email platforms, how to verify recipient identities before sending patient information, and what types of patient data require protection beyond standard email security measures.

Email policy development requires healthcare organizations to establish clear protocols governing patient communication via electronic means. These policies should specify which staff members can send patient information via email, what approval processes are required for sharing sensitive patient data, and how to handle requests from patients who want to receive their health information via email. Policies must also cover how to respond when staff accidentally send patient information to incorrect recipients or when security breaches involving email communications occur.

Testing procedures should verify that email security measures function correctly before implementing systems organization-wide. Healthcare organizations learning how to send HIPAA compliant emails need to conduct penetration testing of their email security systems, verify that encryption activates properly, and confirm that access controls prevent unauthorized viewing of patient information. Testing schedules help identify security vulnerabilities before they can be exploited by malicious actors.

Incident response planning prepares healthcare organizations to handle security breaches involving email communications containing patient information. Response plans should include procedures for containing security incidents, assessing the scope of potential patient information exposure, and notifying affected patients and regulatory authorities when breaches occur. Healthcare organizations must practice their incident response procedures to ensure staff can respond effectively during actual security emergencies.

Patient Communication Considerations

Patient consent requirements vary depending on the type of health information being transmitted and the communication method requested by patients. While healthcare providers can generally communicate with patients about treatment, payment, and healthcare operations without authorization, organizations should obtain written consent before sending detailed medical information via email. Consent forms should explain the security measures in place while acknowledging that email communication carries inherent privacy risks despite protective measures.

Email content guidelines help healthcare staff understand what patient information is appropriate for electronic transmission versus what requires more secure communication methods. Those mastering how to send HIPAA compliant emails recognize that laboratory results, medication changes, andappointment reminders may be suitable for secure email communication, while detailed psychiatric notes, HIV test results, or substance abuse treatment information may require protections or alternative communication methods. Staff need clear decision-making frameworks for evaluating the appropriateness of email communication for different types of patient information.

Alternative communication methods should remain available for patients who prefer not to receive health information via email or who lack secure email access. Understanding how to send HIPAA compliant emails includes recognizing when alternative methods like telephone calls, patient portals, and postal mail provide more appropriate secure alternatives for patient communication while ensuring that lack of email access does not create barriers to necessary healthcare information sharing. Healthcare organizations must accommodate patient preferences while maintaining appropriate security measures for all communication methods.

You Might Also Like

email deliverability

LuxSci Achieves Best-in-Class Performance for Email Security

We’re pleased to share our latest designations and recognition for being “best-in-class” when it comes to email security, including from SecurityScorecard, SSL Labs and the Cybersecurity Excellence Awards.

As you may know, our commitment to email security is unwavering, playing a central role in everything we do. Most of all, this commitment focuses on our customers – and ensuring PHI data is secure at all times. We do this via product innovation, best practices and staying ahead of the latest threats.

With that in mind, now’s a great time to highlight our company’s core values – which are anchored in security – to give you an idea of what it’s like to work with us. Together, they make up what we call the The LuxSci Way with a focus on the following:

  • Secure – We protect the security and privacy of our customers’ data and their systems by taking a security-first approach.
  • Responsible – We are focused on cybersecurity and ensure our software and systems are continually updated for the latest threats.
  • Smart – We proactively apply our knowledge and deep expertise in cybersecurity to provide efficient, responsive customer support.
  • Trust – We sustain partnerships with our customers, and we are committed to their long-term protection and success.

Read more to see the results!

98/100 on SecurityScorecard

LuxSci recently scored 98/100 and received an A rating on SecurityScorecard, a leading cybersecurity ratings firm. SecurityScorecard has ranked more than 21,000 unique vendors in the healthcare space with an average score of 88 and a B rating, placing LuxSci at the top end of the rankings in our industry.

SecurityScorecard ratings offer easy-to-read A-F ratings across a range of risk factors, including network, endpoint and application security, DNS health, and IP reputation. In total, SecurityScorecard has rated more than 11 million organizations worldwide and supports thousands of organizations with its rating technology for self-monitoring, third-party risk management, board reporting, and cyber insurance underwriting.

A+ on SSL Labs TLS Support Check

In related news, LuxSci achieved an overall A+ rating for its latest Qualys SSL Labs TLS support check. SSL Labs performs a deep analysis of the configuration of any SSL web server on the public Internet to better understand how SSL is deployed, scoring vendors across key areas, including certificate, protocol support, key exchange and cipher strength.

SSL Labs is a non-commercial research effort, welcoming participation from any individual and organization interested in SSL.

LuxSci A+ Security

LuxSci Receives Cybersecurity Excellence Award for Healthcare

Finally, LuxSci recently received a 2024 Cybersecurity Excellence Award for healthcare products. The annual awards recognize excellence, leadership, and innovation in cybersecurity across a range of categories and industries. LuxSci was recognized for its Secure Marketing product for HIPPA-compliant marketing, which features industry-leading email security.

Part of the LuxSci Secure Healthcare Engagement Suite of software, LuxSci Secure Marketing empowers healthcare providers, payers and suppliers to use protected health information (PHI) to create secure and personalized email campaigns that increase patient engagement and improve outcomes. The highly flexible LuxSci Secure Marketing solution can securely send millions of emails per month, featuring list management, automation, easy-to-use templates, detailed reporting & analytics, and API connectivity to easily integrate with data and applications.

If you’d like to learn more about LuxSci email security, and our HIPAA-compliant healthcare communications solutions for email, marketing, forms and text, reach out to us today and schedule a call with an expert.

HIPAA email laws

How To Overcome Email Encryption Challenges in Healthcare

Encryption is a critical security measure for protecting electronic protected health information (ePHI) included within email communications, and a key technical safeguard under the HIPAA Security Rule. However, despite its efficacy in helping protect sensitive patient data from malicious actors, encryption can be difficult to successfully implement. 

Technical complexity, user resistance, and compatibility issues across different email systems can emerge as persistent problems, leading to frustration, risky workarounds, and, ultimately, increased risk of ePHI exposure and compliance violations. Without thoughtful deployment and support, encryption can become a barrier to successful secure email communication in healthcare, as opposed to a measure that underpins it.

To help you ensure secure, HIPAA compliant email communication, this post discusses the main encryption challenges you’re likely to encounter, how they can diminish your email security posture, and the measures you can take to overcome them. 

What Is Email Encryption?

Before we discuss the most frequent email encryption challenges faced by healthcare organizations, here’s a quick refresher on what email encryption is and why it’s so important for securing sensitive patient data.  

Email encryption is the process of scrambling the content of a message to make it unreadable as it’s sent to recipients or stored in a database. Only the intended recipient, who has the encryption key, can decrypt the email and access the data within. 

Consequently, in the event an encrypted message is intercepted by malicious actors in transit or exfiltrated from a data store during a security breach, they won’t be able to make sense of it. This renders any ePHI included in the message unintelligible and, therefore, worthless, adding another layer of security that preserves patient privacy – and keeps your business safe.

Common Email Encryption Challenges 

Let’s move on to detailing some of the most frequent encryption challenges that must be overcome by healthcare organizations to ensure secure email communication and HIPAA compliance. 

Decrypting Messages Is Too Difficult

The more difficult or drawn out it is for recipients to decrypt their email messages, the more likely they’ll simply go unread or end up deleted. If the decryption process is too cumbersome, which could include requiring a user to log into a separate site (i.e., a web portal), verify their identity multiple times, create a new account, or install additional software, it adds complexity. This can drive users to seek workarounds or cut corners, such as having information sent to them through unsecured channels, which puts your company at risk.  

Similarly, email clients, browsers, and security settings may impact the decryption process, causing compatibility issues that prevent users from accessing their messages. Within a healthcare setting, where timely communication is crucial, such obstacles can disrupt workflows, slow down patient care, and lead to HIPAA compliance violations if users resort to unencrypted alternatives. 

Encryption that Requires Manual Intervention 

Some email encryption tools require users to manually encrypt messages. If users forget to apply encryption or misconfigure settings, sensitive patient data could be exposed, leading to compliance violations and ePHI exfiltration. 

For employees who handle ePHI and need to send encrypted emails, remembering to enable encryption (vs. automated encryption) is an extra step that introduces the risk of human error into the process. To offer a related, and more relatable, example: how many times have you forgotten to include an attachment when sending an email, even when referencing the attachment in the message? It’s all too easily done. In the same way, an inexperienced, tired, or distracted user could simply neglect to turn on or correctly configure encryption before sending an email, putting patient data at risk. 

Increased IT and Administrative Overhead

The two email encryption challenges outlined above contribute to a third overarching difficulty for healthcare organizations: an increased workload for its IT, security and operations teams. 

First of all, IT, security and operations must establish and continuously enforce encryption policies, configuring rules that ensure sensitive patient data is encrypted while non-sensitive, business communication continues to flow unobstructed. Misconfigured policies can cause over-encryption, resulting in user inaccessibility and disruptions, or under-encryption, leading to exposure of ePHI and HIPAA compliance violations.

Second, IT support teams must troubleshoot user issues: namely employees and external recipients who are unfamiliar with encryption protocols and need support in overcoming difficulties in message decryption. These could be caused by compatibility issues between different email clients or systems, expired or missing digital certificates, incorrect key exchanges, or confusion surrounding accessing encrypted messages through portals or attachments.

Lastly, IT and governance teams must keep up-to-date with changing regulatory updates and email security threats. As compliance requirements evolve, healthcare organizations must reassess encryption standards, upgrade outdated protocols, and ensure that their workforce adheres to best practices. Without an adequate strategy and the right systems in place, managing encryption can become a constant drain on IT bandwidth, taking personnel away from other aspects of their work that contribute to patient care. 

Effective Strategies For Email Encryption

Having discussed the most common encryption challenges and how they can impact a company’s email security posture, let’s look at some of the most powerful mitigation strategies, which will improve the email encryption experience for both senders and recipients.

Balance Security With Ease of Use

To overcome the challenges of user inaccessibility, human error, and excessive administrative overhead, healthcare organizations must balance the ease of use of their encryption solutions with the level of security they provide. 

While opting for the most secure encryption protocols intuitively seems like the best option, extra security often comes at the expense of usability, which can render the encryption irrelevant if users decide to circumvent it altogether, as outlined earlier. Instead, it’s essential to evaluate the sensitivity of message content and select a corresponding level of encryption. 

Moving onto practical technical examples, Transport Layer Security (TLS) is a widely used email encryption standard, thanks to its ease of implementation and use, i.e., once activated, no further action is required by the user to encrypt the message content. However, TLS only encrypts ePHI in transit, i.e., when being sent to recipients, which may prove insufficient for highly sensitive patient data.

In contrast, encryption protocols such as Secure/Multipurpose Internet Mail Extensions (S/MIME),  AES-256 and Pretty Good Privacy (PGP) provide more comprehensive encryption, safeguarding the ePHI contained in email communications both in transit and at rest, i.e., when stored in a database. Now, while this makes them more effective at securing patient data and achieving HIPAA compliance, these standards are more complicated to implement and to use than TLS encryption. 

S/MIME requires users to obtain and install digital certificates from a Certificate Authority (CA), which verifies their respective identities and provides the public key for encryption. Consequently, both the sender and recipient must have valid certificates; if either party’s certificate is revoked or expires, they won’t be able to encrypt or decrypt the message, respectively.

With PGP, meanwhile, users must manually generate and exchange public/private keys. This offers greater flexibility than S/MIME but requires careful key management, which can be confusing for non-technical users. If a recipient doesn’t have the sender’s public key, they won’t be able to decrypt the message. Additionally, both S/MIME and PGP require a public key infrastructure (PKI), which can add considerable administrative overhead, particularly in regards to the management of certificates, public keys, and user credentials. 

Accounting for this, healthcare organizations can balance security with accessibility by employing a tiered encryption strategy: using TLS for lower-risk communication while opting for S/MIME or PGP for more sensitive communications.  

Enable Automatic Encryption 

Subsequently, the challenge of balancing security with accessibility can be remediated by deploying an email delivery platform that not only removes the need for manual user intervention but also automatically applies the appropriate encryption standard based on message content and delivery conditions. Rather than relying on users to choose the correct method—or worse, bypass encryption altogether—modern email solutions like LuxSci can intelligently enforce encryption without affecting the user experience.

Many healthcare companies rely on TLS encryption because it eliminates the need for encryption keys or certificates, additional log-ins, etc. For this reason, it’s often referred to as  ‘invisible encryption’ for its lack of effect on the user experience. 

However, to be most effective, both the sender’s and recipient’s email servers must support enforced TLS (i.e., TLS 1.2 and above). In the event the recipient’s email server doesn’t support TLS, the email message will be delivered unencrypted or fail to send altogether, depending on the server configurations. Additionally, once the email is delivered to the recipient’s inbox, unless the recipient’s email infrastructure encrypts messages at rest, it will be stored in an unencrypted format. 

Consequently, while TLS is ideal for email messaging that doesn’t contain highly sensitive ePHI, it’s insufficient for all healthcare communication. To ensure the secure and HIPAA compliant inclusion of patient data in emails, healthcare organizations should opt for an email solution that supports automated, policy-based encryption, which can upgrade to S/MIME or PGP when necessary. This offers the combined benefits of optimal ePHI security, minimal administrative burden, and removing the need for staff intervention.

Invest in Employee Education

While a flexible encryption policy and deploying email solutions that support automation will go a long way towards overcoming email encryption challenges, these efforts can still be undermined if users aren’t sufficiently educated on their benefits and use. For this reason, it’s crucial that healthcare companies take the time to educate their employees on both the how and why of email encryption.  

Even the most advanced encryption systems can fail if employees don’t understand how to use them properly, as well as what to look out for in their day-to-day email use. Some aspects of email encryption, such as recognizing secure message formats or troubleshooting delivery issues, may still require user awareness. With this in mind, employee training programs should focus on recognizing when additional encryption measures are necessary, how to ask for assistance, the dangers of unsecured channels, and how to report suspicious activity in addition to the practical aspects of using your email delivery platform. 

Overcome Email Encryption Challenges with LuxSci

LuxSci is a leader in secure healthcare communication, offering HIPAA compliant solutions that empower organizations to connect with patients securely and effectively. With over 20 years of expertise, we’ve facilitated the delivery of billions of encrypted emails for healthcare providers, payers, and suppliers.

Luxsci’s proprietary SecureLine encryption technology is specially designed to help healthcare organizations overcome frequent encryption challenges and better ensure HIPAA compliance with powerful, flexible encryption capabilities. Its features include: 

  • Comprehensive email encryption: ensuring the encryption of patient data in transit and at rest. 
  • Automated encryption: “set it and forget it” email encryption guarantees security and HIPAA compliance – with no action required on the part of users once configured. 
  • Flexible encryption: dynamically determining the optimal level of email encryption, as per the recipient’s security posture, job role and supported encryption methods. This makes sure messages are delivered securely while maintaining HIPAA compliance.

Ready to take your healthcare email engagement to the next level? Contact LuxSci today!

biggest email threats

Know the Biggest Email Threats Facing Healthcare Right Now

Due to its near-universal adoption, speed, and cost-effectiveness, email remains one of the most common communication channels in healthcare. Consequently, it’s one of the most frequent targets for cyber attacks, as malicious actors are acutely aware of the vast amounts of sensitive data contained in messages – and standard email communication’s inherent vulnerabilities.

 

In light of this, healthcare organizations must remain aware of the evolving email threat landscape, and implement effective strategies to protect the electronic protected health information (ePHI) included in email messages. Failing to properly secure email communications jeopardizes patient data privacy, which can disrupt operations, result in costly HIPAA compliance violations, and, most importantly, compromise the quality of their patients’ healthcare provision.

 

With all this in mind, this post details the biggest email threats faced by healthcare organizations today, with the greatest potential to cause your business or practice harm by compromising patient and company data. You can also get our 2025 report on the latest email threats, which includes strategies on how to overcome them.

Ransomware Attacks

Ransomware is a type of malware that encrypts, corrupts, or deletes a healthcare organization’s data or critical systems, and enables the cybercriminals that deployed it to demand a payment (i.e., a ransom) for their restoration. Healthcare personnel can unwittingly download ransomware onto their devices by opening a malicious email attachment or clicking on a link contained in an email.

In recent years, ransomware has emerged as the email security threat with the most significant financial impact. In 2024, for instance, there were over 180 confirmed ransomware attacks with an average paid ransom of nearly $1 million. 

Email Client Misconfiguration

While a healthcare organization may implement email security controls, many fail to know the security gaps of their current email service provider (ESP) or understand the value of a HIPAA compliant email platform, leaving data vulnerable to email threats, such as unauthorized access and ePHI exposure, and also, subsequently, a greater risk of compliance violations and reputation damage.


 

Common types of email misconfiguration include:

 

  • Lack of enforced TLS encryption: resulting in emails being transmitted in plaintext, rendering the patient data they contain readable by cybercriminals in the event of interception during transit.
  • Improper SPF/DKIM/DMARC setup: failure to configure or align these email authentication protocols correctly gives malicious actors greater latitude to successfully spoof trusted domains.
  • Disabled or lax user authentication: a lack of authentication measures, such as multi-factor authentication (MFA), increases the risk of unauthorized access and ePHI exposure.
  • Misconfigured secure email gateways: incorrect rules or filtering policies can allow phishing emails through or block legitimate messages.
  • Outdated or unsupported email client software: simply neglecting to download and apply the latest updates or patches from the email client’s vendor can leave vulnerabilities, which are well-known to cybercriminals, exposed to attack.

Social Engineering Attacks

A social engineering attack involves a malicious actor deceiving or convincing healthcare employees into granting unauthorized access or exposing patient data. Relying on psychological manipulation, social engineering attacks exploit a person’s trust, urgency, fear, or curiosity, and encompass an assortment of threats, including phishing and business email compromise (BEC) attacks, which are covered in greater depth below.

Phishing

As mentioned above, phishing is a type of social engineering attack, but they are so widespread that it warrants its own mention. Phishing sees malicious actors impersonating legitimate companies, or their employees, to trick victims into revealing sensitive patient data. 

Subsequently, healthcare organizations can be subjected to several different types of phishing attacks, which include:

 

  • General phishing: otherwise known as bulk phishing or simply ‘phishing’, these are broad, generic attacks where emails are sent to large numbers of recipients, impersonating trusted entities to steal credentials or deliver malware. 
  • Spear phishing: more targeted attacks that involve personalized phishing emails crafted for a specific healthcare organization or individual. These require more research on the part of malicious actors and typically use relevant insider details gleaned from their reconnaissance for additional credibility.
  • Whaling: a form of spear phishing that specifically targets healthcare executives or other high-level employees. 
  • Clone phishing:  when a cybercriminal duplicates a legitimate email that was previously received by the target, replacing links or attachments with malicious ones.
  • Credential phishing: also known as ‘pharming’, this involves emails that link to fake login pages designed to capture healthcare employees’ usernames and passwords under the guise of frequently used legitimate services.

Domain Impersonation and Spoofing

This category of threat revolves around making malicious messages appear legitimate, which can allow them to bypass basic email security checks. As alluded to above, these attacks exploit weaknesses in email client misconfigurations to trick the recipient, typically to expose and exfiltrate patient data, steal employee credentials, or distribute malware.

 

Domain spoofing email threats involve altering the “From” address in an email header to make it appear to be from a legitimate domain. If a healthcare organization fails to properly configure authentication protocols like SPF, DKIM, and DMARC, there’s a greater risk of their email servers failing to flag malicious messages and allowing them to land in users’ inboxes.

 

Domain impersonation, on the other hand, requires cybercriminals to register a domain that closely resembles a legitimate one. This may involve typosquatting, e.g., using “paypa1.com” instead of “paypal.com”. Alternatively, a hacker may utilize a homograph attack, which substitutes visually similar characters, e.g., from different character sets, such as Cyrillic. Malicious actors will then send emails from these fraudulent domains, which often have the ability to bypass basic email filters because they aren’t exact matches for blacklisted domains. Worse still, such emails can appear authentic to users, particularly if the attacker puts in the effort to accurately mimic the branding, formatting, and tone used by the legitimate entity they’re attempting to impersonate. 

Insider Email Threats

In addition to external parties, employees within a healthcare organization can pose email threats to the security of its PHI. On one hand, insider threats can be intentional, involving disgruntled employees or third-party personnel abusing their access privileges to steal or corrupt patient data. Alternatively, they could be the result of mere human error or negligence, stemming from ignorance, or even fatigue.

 

What’s more, insider threats have been exacerbated by the rise of remote and flexible conditions since the onset of the COVID-19 pandemic, which has created more complex IT infrastructures that are more difficult to manage and control.  

Business Email Compromise (BEC) Attacks

A BEC attack is a highly targeted type of social engineering attack in which cybercriminals gain access to, or copy, a legitimate email account to impersonate a known and trusted individual within an organization. BEC attacks typically require extensive research on the targeted healthcare company and rely less on malicious links or attachments, unlike phishing, which can make them difficult to detect.

 

Due to the high volume of emails transmitted within the healthcare industry, and the sensitive nature of PHI often included in communications to patients and between organizations, the healthcare industry is a consistent target of BEC attacks.

 

BEC attacks come in several forms, such as:

 

  • Account compromise: hijacking a real employee’s account and sending fraudulent messages.
  • Executive fraud: impersonating high-ranking personnel to request urgent financial transactions or access to sensitive data.
  • Invoice fraud: pretending to be a vendor asking for the payment of a fraudulent invoice into an account under their control.

Supply Chain Risk

Healthcare organizations increasingly rely on third-party vendors, including cloud service providers, software vendors, and billing or payment providers to serve their patients and customers. They constantly communicate with their supply chain partners via email, with some messages containing sensitive patient data; moreover, some of these organizations will have various levels of access to the PHI under their care.

 

Consequently, undetected vulnerabilities or lax security practices within your supply chain network could serve as entry points for email threats and malicious action. For instance, cybercriminals can compromise the email servers of a healthcare company’s third-party vendor or partner, and then send fraudulent emails from their domains to deploy malware or extract patient data.

 

Another, somewhat harrowing, way to understand supply chain risk is that while your organization may have a robust email security posture, in reality, it’s only as strong as that of your weakest third-party vendor’s security controls.

Download LuxSci’s Email Cyber Threat Readiness Report

To gain further insight into the biggest email threats to healthcare companies in 2025, including increasingly prevalent AI threats, download your copy of LuxSci’s Email Cyber Threat Readiness Report

 

You’ll also learn about the upcoming changes to the HIPAA Security Rule and how it’s set to impact your organization going forward, and the most effective strategies for strengthening your email security posture.

 

Grab your copy of the report here and begin the journey to strengthening your company’s email threat readiness today.

How Do You Know if Software is HIPAA Compliant?

How Do You Know if Software is HIPAA Compliant?

As in any industry, the healthcare sector is eager to embrace any new technology solution that increases productivity, enhances operational efficiency, and cuts costs. However, the rate at which healthcare companies – and their patients and customers – have had to adopt new software and digital tools has skyrocketed since the pandemic. And while a lot of this software is beneficial, a key question arises: is it HIPAA compliant? While an application may serve an organization’s needs – and may be eagerly embraced by patients – it also needs to have the right measures in place to safeguard protected health information (PHI) to determine if it is indeed HIPAA compliant.

Whether you’re a healthcare provider, software vendor, product team, or IT professional, understanding what makes software HIPAA compliant is essential for safeguarding patient data and insulating your organization from the consequences of falling afoul of HIPAA regulations. 

With this in mind, this post breaks down the key indicators of HIPAA compliant software, the technical requirements you should look for, and best practices for ensuring your software is HIPAA compliant.

What Does It Mean for Software to Be HIPAA-Compliant?

The Health Insurance Portability and Accountability Act (HIPAA)  sets national standards for safeguarding PHI, which includes any data related to a patient’s health, treatment, or payment details. In light of this, any applications and systems used to process, transmit, or store PHI must comply with the stringent privacy, security, and breach notification requirements set forth by HIPAA.

Subsequently, while healthcare organizations use a wide variety of software, most of it is likely to be HIPAA-compliant. Alarmingly, many companies aren’t aware of which applications are HIPAA-compliant and, more importantly, if there’s a need for compliance in the first place.   

However, it’s important to note that HIPAA itself does not certify software. Instead, it’s up to software vendors to implement the necessary security and privacy measures to ensure HIPAA compliance. Subsequently, it’s up to healthcare providers, payers, and suppliers to do their due diligence and source HIPAA compliant software. 

How to Determine If Software Is HIPAA Compliant

So, now that we’ve covered why it’s vital that the applications and systems through which sensitive patient data flows must be HIPAA compliant, how do you determine if your software meets HIPAA requirements? To assess whether software is HIPAA compliant, look for these key indicators:

1. Business Associate Agreement (BAA)

A HIPAA compliant software provider must sign a Business Associate Agreement (BAA) with covered entities, i.e., the healthcare company. A BAA is a legal contract that outlines the vendor’s responsibility for safeguarding PHI. If a software provider doesn’t offer a BAA, their software is NOT HIPAA compliant.

Now, if a vendor offers a BAA, it should be presented front and center in their benefits, terms or conditions, if not on their website homepage as part of their key features. If a vendor has taken the time and effort to make their infrastructure robust enough to meet HIPAA regulations, they’ll want to make it known to reassure healthcare organizations of their suitability to their particular needs.  

2. End-to-End Encryption

A key requirement of the HIPAA Security Rule is that sensitive patient data is encrypted end to end during its transmission. This means being encrypted during transit, i.e., when sent in an email or entered into a form, and at rest, i.e., within the data store in which it resides.

In light of this, any software that handles PHI should use strong encryption standards, such as:

  • Transport Layer Security (TLS – 1.2 or above): for secure transmission of PHI in email and text communications. 
  • AES (Advanced Encryption Standard) 256: the preferred encryption method for data storage as per HIPAA security standards, due to its strength.

3. Access Controls and User Authentication

One of the key threats to the privacy of patient data is access by unauthorized parties. This could be from employees within the organization who aren’t supposed to have access to PHI. In some, or even many, cases, this may come down to lax and overly generous access policies. However, this can result in the accidental compromise of PHI, affecting both a patient’s right to privacy and, in the event patient data is unavailable, operational capability. 

Alternatively, the exposure of PHI can be intentional. One on hand, it may be from employees working on behalf of other organizations, i.e., disgruntled employees about to jump ship to a competitor. More commonly, unauthorized access to patient data is perpetrated by malicious actors impersonating healthcare personnel. To prevent the unintended exposure of PHI, HIPAA compliant infrastructure, software and applications must support access control policies, such as:

  • Role-based access control (RBAC): the restriction of access to PHI based on their job responsibility in handling PHI, i.e.., an employee in billing or patient outreach. A healthcare organization’s security teams can configure access rights based on an employee’s need to handle patient data in line with their role in the company. 
  • Multi-factor authentication (MFA): this adds an extra layer of security beyond user names and passwords. This could include a one-time password (OTP) sent via email, text, or a physical security token. MFA is very diverse and can be scaled up to reflect a healthcare organization’s security posture. This could include also biometrics, such as retina and fingerprint scans, as well as voice verification.
  • Zero-trust security: a rapidly emerging security paradigm in which users are consistently verified, as per the resources they attempt to access. This prevents session hijacking, in which a user’s identity is trusted upon an initial login and verification. Instead, zero trust continually verifies a user’s identity.  
  • Robust password policies: another simple, but no less fundamental, component of user authentication is a company’s password policy. While conventional password policies emphasize complexity, i.e., different cases, numbers, and special characters, newer password policies, in contrast, emphasize password length. 

4. Audit Logs & Monitoring

A key HIPAA requirement is that healthcare organizations consistently track and monitor employee access to patient data. It’s not enough that access to PHI is restricted. Healthcare organizations must maintain visibility over how patient data is being accessed, transferred, and acted upon (copied, altered, deleted). This is especially important in the event of a security event when it’s imperative to pinpoint the source of a breach and contain its spread.

In light of this, HIPAA compliant software must:

  • Maintain detailed audit logs of all employee interactions with PHI.
  • Provide real-time monitoring and alerts for suspicious activity.
  • Support log retention for at least six years, as per HIPAA’s compliance requirements.

5. Automatic Data Backup & Disaster Recovery

Data loss protection (DLP) is an essential HIPAA requirement that requires organizations to protect PHI from loss, corruption, or disasters. With this in mind, a HIPAA-compliant software solution should provide:

  • Automated encrypted backups: real-time data backups, to ensure the most up-to-date PHI is retained in the event of a security breach.
  • Comprehensive disaster recovery plans: to rapidly restore data in case of cyber attack, power outage, or similar event that compromises data access.  
  • Geographically redundant storage: a physical safeguard that sees PHI. stored on separate servers in different locations, far apart from each other. So, if one server goes down or is physically compromised (fire, flood, power outage, etc.,) patient data can still be accessed. 

6. Secure Messaging and Communication Controls

For software that involves email, messaging, or telehealth, i.e., phone or video-based interactions, in particular, HIPAA regulations require:

  • End-to-end encryption: for all communications, as detailed above.
  • Access restrictions: policies that only enable those with the appropriate privileges to view communications containing patient data.
  • Controls for message expiration: automatically deleting messages after a prescribed time to mitigate the risk of unauthorized access.
  • Audit logs: to monitor the inclusion or use of patient data.

7. HIPAA Training & Policies

Even the most secure software can be compromised if its users aren’t sufficiently trained on how to use it. More specifically, the risk of a security breach is amplified if employees don’t know how to identify suspicious behavior and who to report it to if an event occurs. With this in mind, it’s prudent to look for software vendors that:

  • Offer HIPAA compliance and cyber safety awareness training for users.
  • Implement administrative safeguards, such as usage policy enforcement and monitoring.
  • Support customizable security policies to align with your organization’s compliance needs.

Shadow IT and HIPAA Compliance

Shadow IT is an instance of an application or system being installed and used within a healthcare organization’s network without an IT team’s approval. Despite its name, shadow IT is not as insidious as it sounds: it’s simply a case of employees unwittingly installing applications they feel will help them with their work. The implications, however, are that:

  1. IT teams are unaware of said application, and how data flows through it, so they can’t secure any PHI entered into it.
  2. The application may have known vulnerabilities that are exploitable by malicious actors. This is all the more prevalent with free and/or open-source software.

While discussing the issue of shadow IT in general, it’s wise to discuss the concept of “shadow AI” – the unauthorized use of artificial intelligence (AI) solutions within an organization without its IT department’s knowledge or approval. 

It’s easily done: AI applications are all the rage and employees are keen to reap the productivity and efficiency gains offered by the rapidly growing numbers of AI tools. Unfortunately, they fail to stop and consider the data security risks present in AI applications. Worse, with AI technology still in its relative infancy, researchers, vendors, and other industry stakeholders have yet to develop a unified framework for securing AI systems, especially in healthcare. 

Consequently, the risks of entering patient data into an AI system – particularly one that’s not been approved by IT – are considerable. The privacy policies of many widely-used AI applications, such as ChatGPT, state the data entered into the application, during the course of engaging with the platform, can be used in the training of future AI models. In other words, there’s no telling where patient data could end up – and how and where it could be exposed. 

The key takeaway here is that entering PHI into shadow IT and AI applications can pose significant risks to the security of patient data, and employees should only use solutions vetted, deployed, and monitored by their IT department. 

Best Practices for Choosing HIPAA Compliant Software

Now that you have a better understanding of how to evaluate software regarding HIPAA compliance, here are some best practices to keep in mind when selecting applications to facilitate your patient engagement efforts:

Look for a BAA: quite simply, having a BAA in place is an essential requirement of HIPAA-compliant software. So, if the vendor doesn’t offer one, move on.

Verify encryption standards: ensure the software encrypts PHI both at rest and in transit.

Test access controls: choose HIPAA-compliant software that allows you to restrict access to PHI based on an employee’s role within the organization. 

Review audit logging capabilities: HIPAA compliant software should track every PHI interaction. This also greatly assists in incident detection and reporting (IDR), as it enables security teams to pinpoint and contain cyber threats should they arise.

Ensure compliance support: knowing the complexities of navigating HIPAA regulations, a reputable software vendor should provide comprehensive documentation on configuring their solution to match the client’s security needs. Better yet, they should provide the option of cyber threat awareness and HIPAA compliance training services. 

Create a List of Software Vendors: combining the above factors, it’s prudent for healthcare organizations to compile a list of HIPAA compliant software vendors that possess the features and capabilities to adequately safeguard PHI.

Choosing HIPAA Compliant Software

Matching the right software to a company’s distinctive workflows and evolving needs is challenging enough. However, for healthcare companies, ensuring the infrastructure and applications within their IT ecosystem also meet HIPAA compliance standards requires another layer of, often complicated, due diligence. 

Failure to deploy a digital solution that satisfies the technical, administrative, and physical security measures required in a HIPAA compliant solution exposes your organization to the risk of suffering the repercussions of non-compliance. 

If select and deploy the appropriate HIPAA compliant software, in contrast, your options for patient and customer engagement are increased, and you’ll be able to include PHI in your communications to improve patient engagement and drive better health outcomes. Schedule a consultation with one of our experts at LuxSci to discuss whether the software in your IT ecosystem meets HIPAA regulations. and how we can assist you in ensuring your organization is communicating with patient and customers in a HIPAA compliant way.