LuxSci

LuxSci Welcomes Enterprise Software Executive Mark Leonard as New CEO

Mark Leonard LuxSci CEO

LuxSci is pleased to announce the appointment of Mark Leonard as CEO to fuel the company’s next phase of growth. Founder Erik Kangas continues as CTO to focus on product innovation and expansion.

Mark brings more than two decades of enterprise software experience to LuxSci, selling to both technical buyers and business users. He’s led sales, customer success and marketing teams at high-growth start-ups and scale-ups with a proven track record of success, including AI solution providers Cogito and Interactions, and insurance software provider Enservio. Mark’s unique executive leadership experience includes roles as Chief Revenue Officer, Executive Vice President of Customer Success and Chief Marketing Officer, bringing hands-on, real-world expertise in the full range of go-to-market activities to LuxSci.

“LuxSci has built an enterprise-class product and has established a leadership position in the market through sheer determination and an unmatched commitment to its customers’ success,” said Leonard. “I’m honored to join the team as we embark on LuxSci’s next phase of growth, and I want to especially thank founders Erik Kangas and Jeanne Fama, as well as Daan Visscher and the team over at Main Capital Partners, for this incredible opportunity.”

Mark Leonard LuxSci CEO

“It’s an exciting time! The addition of Mark to the LuxSci team marks an important milestone in the LuxSci journey, supporting our aspirations to be the leader in secure healthcare communications,” said Kangas. “We’re now positioned better than ever to understand our customers and the needs of the market to deliver solutions that make a real difference in today’s healthcare experience – from patients to providers, payers and suppliers.”

LuxSci in November received a majority investment from Main Capital Partners, one of Europe’s largest private equity firms. Main recently secured €2.44B in commitments for its latest fund, bringing its total assets under management to approximately €6B. With the financial strength and backing of Main, LuxSci has direct access to the firm’s market intelligence and performance excellence teams for data & research, best practices on go-to-market strategies, technology, financing and M&A – strongly positioning the company for continued innovation and future growth.

Today, LuxSci is used by nearly 2,000 customers for HIPAA-compliant email and marketing solutions across the healthcare industry, including Athena Health, 1800 Contacts, Delta Dental, Beth Israel Lahey Health, Hinge Health, and Rotech Healthcare.

Picture of LuxSci

LuxSci

Get in touch

Find The Best Solution For Your Organization

Talk To An Expert & Get A Quote




A member of our staff will reach out to you

Get Your Free E-Book!

LuxSci High Email Deliverability Best Practices Paper

What you’ll learn:

Related Posts

HIPAA Compliant Email

Rethinking HIPAA Compliant Email – Not Just a Checkbox

The compliance-only mentality is outdated.

Let’s be honest—when most healthcare organizations think about HIPAA compliant email, it’s usually in the context of avoiding fines or satisfying checklists. And while yes, compliance is critical, viewing it only through the lens of risk management is a missed opportunity.

In reality, HIPAA compliant email, when implemented properly, is one of the most powerful tools for patient and customer engagement. Why? Because it unlocks the ability to leverage protected health information (PHI) safely, enabling personalized, timely, and high-impact email communication that drives better engagement, satisfaction, and outcomes.

What Makes Email Truly HIPAA Compliant?

As a reminder, HIPAA compliant email requires that protected health information (PHI) is safeguarded both in transit and at rest. That means your email provider must:

  • Use encryption at all times
  • Be access-controlled
  • Include audit logs
  • Be stored and transmitted in a secure manner
  • Provide a Business Associate Agreement

Regular email services just don’t cut it. In fact, most consumer or marketing email platforms like Sendgrid or Constant Contact, while great at sending email, are not HIPAA compliant or have limitations when it comes to using PHI in your messages. Even when bolted-on encryption solutions are used, they often lack the flexibility, scalability, and automation needed for safe and effective healthcare email engagement.

LuxSci goes beyond the basics with policy-based encryption, secure TLS, PKI encryption and escrow/secure portal options. LuxSci’s SecureLine™ encryption technology dynamically selects the appropriate encryption method based on recipient capabilities and messaging context and can be configured to enforce secure delivery automatically according to organizational policies. LuxSci also provides the ability to enforce advanced multi-factor authentication. Every message is tracked with full audit trails—no guesswork, no loose ends.

The Real Opportunity – Secure, Personalized Email with PHI

Using PHI to Drive Personalized Messaging
Imagine sending a personalized reminder to a diabetic patient about an upcoming check-up. Or reaching out to new mothers with postnatal care resources tailored to their needs. Or sending automated email workflows to all your members to accelerate and increase new plan enrollments. Or email customer and prospects about a new product upgrade or new service offering. The list goes on. That’s the power of PHI-personalized email—when done securely.

Targeted Segmentation with Sensitive Data
With HIPAA compliant email solutions like LuxSci, you can segment your audience based on real health data with high levels of precision, such as chronic conditions, appointment history, insurance status, health risks, and more, without compromising patient trust or security.

Breaking the One-Size-Fits-All Approach in Healthcare Email
Generic email blasts are over. Modern patients expect personalization. With LuxSci, you can deliver highly targeted, highly secure emails with encrypted content, while staying HIPAA compliant.

Real Business Results from Secure Email

Here’s how secure, personalized email can drive improved results across a range of healthcare communications, including:

  • Increased Patient Appointments and Follow-ups – Sending encrypted, personalized appointment reminders and follow-up notices can reduce no-shows and boost overall appointment volume.
  • Boosting Preventative Care with Outreach Campaigns – Preventative campaigns (think flu shots or cancer screenings) sent securely to the right segments can lead to higher response rates, better health outcomes, and a lower cost of care.
  • Improving Health Plan Enrollments – Targeted email outreach during open enrollment, tailored by eligibility or plan type, and powered by automated workflows leads to higher enrollments and lower call center costs.
  • Driving Awareness and Sales of New Services or Products – Have a product upgrade offer, new wellness program or telehealth service? Send secure, PHI-informed HIPAA compliant email to the right audience for increased sales and faster adoption.
  • Optimize Explanation of Benefits NoticesReplace snail mail with email that’s fast, reliable and trackable, ensuring customers are informed and compliance is met.

The Healthcare Marketer’s Secret Weapon: Using PHI Responsibly

In a world moving away from third-party cookies, first-party data is more valuable than ever, and PHI is the most powerful form of it in healthcare. With secure HIPAA compliant email, PHI doesn’t have to be locked away. Marketers can safely use it to understand patient needs and send relevant, timely messages. PHI-driven segmentation lets you build hyper-targeted campaigns that speak to relevant conditions, unique needs and timely topics, increasing open rates, clicks throughs, and campaign conversions.

Meeting the Personalization Demands of Today’s Patients and Customers

HIPAA-compliant email is no longer just about checking a box. It’s about unlocking the full potential of your patient and customer data to drive better engagement, healthier outcomes, and measurable business results.

In closing, below are some final thoughts on how secure, HIPAA compliant email delivers long-term value for your organization and better connections with your patients and customers, including:

    • Future-Proofing Healthcare Engagement – Patients expect Amazon-level personalization. HIPAA-compliant tools let you meet those expectations securely.

    • Adapting to Data Privacy Regulations Beyond HIPAA – From GDPR to state-level privacy laws, secure communication is no longer optional, it’s foundational.

    • Building Trust Through Secure Communication – Each secure, personalized message sent is a trust-building moment with your patients and customers.

Why LuxSci? The Infrastructure Behind the Performance

With LuxSci’s secure email infrastructure and email marketing solutions, healthcare organizations can confidently personalize communication, reach patients more effectively, and fuel growth with PHI-safe segmentation, messaging, and email automation.

LuxSci takes data security and email performance to the next level by offering dedicated cloud infrastructure for each customer, which means your email campaigns aren’t slowed down by other vendors on shared cloud services and your attack footprint is much smaller. In short, you get higher delivery rates and throughput with proven HIPAA compliance and data security.

The future of healthcare engagement is personal, secure, and performance-driven—and it starts with HIPAA compliant email done right.

Reach out today with any questions or to learn more about LuxSci.


FAQs

1. Is HIPAA-compliant email necessary for marketing communications?
Yes—if your emails include or are based on PHI (like appointment reminders, condition-based messaging, or insurance info), you need HIPAA-compliant email and recipient consent to avoid legal risk and preserve patient trust.

2. Can PHI be used in marketing emails under HIPAA?
Yes, with proper consent and secure, HIPAA compliant infrastructure like LuxSci’s, PHI can be safely used in emails for personalized, segmented campaigns.

3. How does LuxSci ensure high email deliverability for healthcare messages?
LuxSci uses dedicated cloud servers for each customer, active email reputation monitoring, and best-practice configurations to ensure high deliverability rates for sensitive emails.

4. Is LuxSci only for marketing teams?
No—LuxSci supports marketing, clinical, operations, and IT teams by enabling secure, compliant email communication across the entire organization.

5. What types of PHI can I use to segment campaigns using LuxSci?
You can segment based on chronic conditions, visit history, insurance status, provider details, age, gender, location, and more—all while staying fully compliant.

HIPAA compliant email

Most Popular LuxSci Blog Posts of 2025

As we close out 2025, healthcare communicators, IT and compliance leaders, and digital marketers face an ever-changing landscape of security threats, regulatory updates, and technology innovations. At LuxSci, we’re committed to helping you with continuous updates and guidance on the future of secure healthcare communications.

In case you missed it, or need a refresh, below are some of our most popular blog posts from 2025. Enjoy!

1. Improve Email Engagement and Marketing Results with Automated Workflows

Automated workflows are transforming how healthcare organizations engage patients and customers — enabling dynamic, event-driven campaigns that easily scale your outreach and keep you HIPAA compliant. In this post, we introduce LuxSci’s Automated Workflows capability for our Secure Marketing healthcare solution. Learn how sequence-based journeys can personalize outreach and optimize engagement with behavior-based triggers that improve campaign performance — without sacrificing data security.

Read the full post: LuxSci Enhances Secure Marketing with Automated Workflows

2. Healthcare Email Threat Readiness Strategies

Email remains a frontline channel for healthcare communications, and a prime target for cyber threats and criminals. This deep-dive into email threat readiness strategies covers essential practices like continuous monitoring, business continuity planning, and workforce training to mitigate email-borne security risks. Whether you’re responsible for clinical systems, marketing, or enterprise IT, this post provides a strategic playbook to strengthen your defenses, while maximizing your results.

Read the full post: Healthcare Email Threat Readiness Strategies

3. HIPAA Compliant Email — 20 Tips in 20 Minutes

For practical guidance you can apply right now, this on-demand webinar distills 20 key tips for HIPAA-compliant email across technical, legal, and operational domains. Whether you’re refining your infrastructure, improving deliverability, or modernizing your data security posture in 2026, this resource is a time-efficient way to elevate your compliance and security.

Read the post and watch the webinar on demand: HIPAA Compliant Email: 20 Tips in 20 Minutes

4. Is SendGrid HIPAA-Compliant? What You Should Know

Choosing the right email provider matters, especially when Protected Health Information (PHI) is at stake. In this post, we examine SendGrid’s capabilities in the context of HIPAA compliance, outline what it takes to send PHI securely, and offer guidance on evaluating third-party services for secure healthcare email and communication needs.

Read the full post: Is SendGrid HIPAA-Compliant?

5. LuxSci Shines in G2 Winter 2026 Reports

Customer feedback matters to LuxSci. In this post, we share the most recent news about LuxSci’s performance in the G2 Winter 2026 Reports, where we earned 20 badges across categories like Email Security, Encryption, Gateway, and HIPAA-Compliant Messaging. These reviews reflect not just product excellence, but trust from real users, which we work hard to build every day!

Read the full post: LuxSci Shines in G2 Winter 2026 Reports

Looking Ahead to 2026

We look forward to providing more information and insights on secure healthcare communications in the coming year, including the latest on HIPAA compliant email, PHI security, healthcare marketing, threat readiness, and personalized engagement. In the meantime, if you’re not already, follow us on LinkedIn below, and we’ll see you here in 2026!

Follow LuxSci on LinkedIn

HIPAA compliant email

LuxSci Welcomes Angel Mazariegos as Head of Finance

LuxSci, a leader in secure healthcare communications and HIPAA compliant email, is pleased to announce the appointment of Angel Marie Mazariegos as the company’s new Head of Finance. With over 25 years of experience in financial management, accounting, and human resources, Angel will play a central role in advancing LuxSci’s operational excellence and supporting the company’s rapid growth in 2026 and beyond.

Angel brings a wealth of expertise to LuxSci, having held senior leadership positions at organizations focused on financial services, language and access services for healthcare, and human resources. In these roles, Angel has led multi-department Finance and HR teams, spearheading critical initiatives, including ERP implementations, streamlined employee onboarding, and financial process optimization.

In her role at LuxSci, Angel will oversee all aspects of the company’s finance operations, including budgeting, forecasting and reporting. Additionally, Angel will manage the company’s HR function, ensuring that LuxSci continues to foster a strong, people-driven culture based on its Secure, Trust, Responsible and Smart company values.

“Angel’s blend of financial and HR leadership makes her an invaluable addition to the LuxSci executive team and a real asset for our people,” said Mark Leonard, CEO of LuxSci. “We look forward to working with Angel to build the high-performing teams that will be critical to our future growth and serving the evolving needs of our customers.”

Angel holds dual MBA degrees in Accounting and Human Resource Management from Cappella University, as well as dual BS degrees in Business Administration (Accounting and CIS Business Systems) from California State University, Los Angeles.

“I am honored to join the LuxSci team at such an exciting time for the company,” said Mazariegos. “I look forward to working with the team and helping build on LuxSci’s reputation for excellence and reliability in secure healthcare communications.”

HIPAA Compliant Email

LuxSci Shines in G2 Winter 2026 Reports, Underscoring Commitment to Product Leadership and Trusted Relationships

We’re pleased to announce that LuxSci has been recognized for excellence and leadership for HIPAA compliant email and messaging in the just-released G2 Winter 2026 Reports!

Based on verified customer reviews, LuxSci earned 20 G2 badges as part of the most recent G2 reports, including top honors such as Grid Leader, Highest User Adoption, Best Support, and Best Estimated ROI.

This recognition further validates what we’ve always believed: our customers don’t just choose a great product — they choose a great partner. At LuxSci, we build long-term, trusted relationships with our customers, anchored in product reliability, industry-leading email deliverability and performance, and the best customer support in the business.

Why G2 Matters

G2 is a globally trusted peer‑review platform that aggregates verified user feedback and real‑world usage data to rank software and service providers. G2’s seasonal reports like the Winter 2026 editions shine a spotlight on latest tools and vendors that deliver consistent value and satisfaction to real customers.

Earning 20 badges this quarter signals a strong vote of confidence from our customers and community, helping affirm that LuxSci is a leading, highly adopted secure email solutions provider.

What We Earned in Winter 2026

Among the 20 badges awarded to LuxSci across Email Security, Email Encryption, Email Gateway and HIPAA Compliant Messaging are:

  • Grid Leader
  • Highest User
  • Best Support
  • Best Estimated ROI

This broad range of accolades spanning leadership, adoption, support and return on investment underscores the reliability of our solutions and the trust our customers place in us.

Awards Reflect Our Commitment to Customer Success

Reliable. Winning Grid Leader and Highest User Adoption demonstrates that thousands of users are depending on LuxSci, securely delivering emails to today’s most popular platforms, including Gmail, Apple Mail, Yahoo Mail and AOL, to name a few.

Proven. With Best Estimated ROI, customers are saying that LuxSci delivers tangible results, whether in secure email delivery, regulatory compliance, or operational efficiency.

Long‑Term Trust. Best Support is perhaps the most telling because for us, success isn’t just about features, it’s about being there for our customers every step of the way.

Thank you to all of our customers. We remain committed to your success — today and in the future.

Want to learn more about LuxSci? Reach out and connect with us today!

You Might Also Like

healthcare marketing trends

What Makes a Platform HIPAA Compliant?

A platform becomes HIPAA compliant through a combination of security features, privacy controls, and administrative processes that protect patient information according to HIPAA regulations. No platform is inherently compliant but, rather, compliance emerges from implementing required safeguards, obtaining a Business Associate Agreement, and configuring the platform HIPAA compliant settings to handle protected health information properly. Healthcare organizations must evaluate platforms based on these capabilities and implement appropriate security measures to maintain compliance.

Core Security Protections

To make a platform HIPAA compliant, entities must incorporate several fundamental security capabilities. Encryption protects data both during storage and transmission, preventing unauthorized access. Authentication systems verify user identities through methods like password requirements and multi-factor verification. Access controls restrict what information different users can view based on job roles and responsibilities. Audit logging creates records of who accessed information and what actions they performed. Backup systems maintain data availability while incorporating appropriate security protections. These features enable organizations to implement the safeguards required by the HIPAA Security Rule.

Vendor Agreement Framework

HIPAA compliant platforms provide Business Associate Agreements (BAAs) establishing vendor responsibilities for protecting healthcare information. These agreements define how the platform vendor handles protected health information and outlines security obligations. Platforms designed for healthcare use typically offer standardized BAAs as part of their service agreements. The agreement specifies which portions of the platform fall under compliance coverage, as some vendors exclude certain features or services. Organizations must obtain these agreements before storing any patient information on third-party platforms regardless of security features implemented.

Patient Data Privacy Mechanisms

Platforms supporting healthcare data incorporate privacy controls aligned with HIPAA requirements. Notice functionality allows organizations to inform patients about information usage and their privacy rights. Consent management captures and stores patient authorizations for information disclosures. Access request handling helps organizations respond when patients want copies of their records. These privacy features help organizations fulfill obligations under the HIPAA Privacy Rule. While security prevents unauthorized access, privacy controls manage authorized information usage according to regulatory requirements and patient preferences.

Compliance Evidence Generation

To make a platform HIPAA compliant, entities can adopt solutions that provide documentation capabilities demonstrating regulatory adherence. Configuration documentation shows how security settings protect patient information. Audit reports detail system access and usage patterns for compliance verification. Risk assessment tools help identify potential vulnerabilities within platform implementations. These documentation features support healthcare organizations during internal reviews and external audits. Thorough reporting capabilities allow organizations to demonstrate due diligence in protecting healthcare information when questions arise about compliance status.

Healthcare Process Enablement

Platforms designed for healthcare environments incorporate features that maintain compliance while supporting clinical and administrative workflows. Secure messaging allows providers to discuss patient care without compromising confidentiality. Document management includes appropriate security controls for clinical records. Task management tracks workforce activities while protecting associated patient information. These workflow capabilities allow healthcare organizations to maintain productivity while adhering to regulatory requirements. The platform architecture considers both security needs and practical usage patterns within healthcare environments.

Continuous Protection Adaptation

HIPAA compliant maintenance includes features that support compliance over time as threats evolve. Vulnerability scanning identifies potential security issues as they emerge. Update mechanisms implement security patches without disrupting operations. Configuration management prevents inadvertent changes that might compromise compliance status. Training tools help staff understand proper system usage and security procedures. These management capabilities help organizations maintain compliance as technology and regulations evolve. Effective platforms reduce the administrative burden of ongoing compliance management while maintaining appropriate security controls

Best HIPAA Compliant Email Software

Is ProtonMail HIPAA Compliant?

ProtonMail can be HIPAA compliant with proper implementation and a signed Business Associate Agreement (BAA). The platform offers end-to-end encryption, secure message storage, and multiple authentication factors that align with HIPAA security requirements. Healthcare organizations must obtain ProtonMail’s BAA, implement appropriate usage policies, and ensure staff understand proper email handling practices to maintain compliance when using the service for patient communications.

ProtonMail’s Security Architecture and HIPAA Compliant Status

ProtonMail provides several security features that support HIPAA compliance requirements. End-to-end encryption protects message content from interception during transmission and prevents ProtonMail itself from accessing message contents. Zero-access encryption ensures emails remain encrypted while stored on ProtonMail’s servers. Two-factor authentication adds protection beyond passwords when accessing accounts. Message expiration allows senders to set automatic deletion timeframes for sensitive communications. The platform’s Swiss location provides additional privacy protections under Swiss law. While these technical features are the foundation for becoming HIPAA complia, tentchnology alone doesn’t create compliance without proper organizational measures and agreements.

Business Associate Agreement Availability

Healthcare organizations must obtain a Business Associate Agreement before using any service for protected health information. ProtonMail offers BAAs for users of their Professional and Enterprise plans, but not for free or Plus accounts. The agreement establishes ProtonMail’s responsibilities for protecting healthcare data according to HIPAA regulations. Organizations should review the BAA terms carefully to understand which ProtonMail features and services it covers. The agreement outlines breach notification procedures and compliance responsibilities for both parties. Without this formal agreement in place, healthcare organizations cannot legally use ProtonMail for patient information regardless of the platform’s security capabilities or other protective measures implemented.

Limitations and Compliance Challenges

Despite strong security features, ProtonMail presents several challenges for healthcare organizations seeking HIPAA compliance. When sending emails to non-ProtonMail users, end-to-end encryption requires recipients to access messages through a separate portal using shared passwords, potentially creating friction in patient communications. Access controls may not provide the granularity needed for larger healthcare organizations with complex permission requirements. Audit logging capabilities could fall short of HIPAA’s detailed tracking requirements for some implementations. Integration with existing healthcare systems might require custom development work. Organizations must evaluate these limitations against their workflow needs and compliance requirements before selecting ProtonMail as their email solution.

Implementation Requirements for Healthcare Users

Healthcare organizations using ProtonMail must implement several measures beyond basic account setup. Administrative policies should clearly define what types of patient information may be communicated via email. Staff training needs to cover proper handling of protected health information, including when encryption is required and how to verify recipient addresses. Organizations must establish procedures for securely communicating passwords when sending encrypted messages to non-ProtonMail users. Account management processes should address staff departures and role changes to maintain appropriate access controls. Documentation practices need to demonstrate compliance measures during potential regulatory reviews or audits. The completeness of these organizational measures ultimately determines whether ProtonMail functions as a HIPAA compliant solution.

Comparison with Healthcare-Focused Email Solutions

ProtonMail differs from email services specifically designed for healthcare organizations. While ProtonMail emphasizes general security and privacy, healthcare-focused providers build their services around HIPAA compliance requirements. Specialized solutions often include features like automated patient data detection, healthcare-specific DLP rules, and integration with electronic health records. Their administrative tools typically provide more detailed compliance reporting tailored to healthcare requirements. Support staff understand healthcare workflows and compliance challenges. Healthcare-specific platforms may offer simpler HIPAA compliant documentation to streamline regulatory requirements. Organizations must weigh whether ProtonMail’s general security approach or a healthcare-specialized solution better addresses their individual requirements.

Practical Usage Guidelines for Healthcare Organizations

Healthcare organizations can maximize ProtonMail’s HIPAA compliant potential through thoughtful usage practices. Creating clear distinction between communications containing protected health information and general business emails helps maintain appropriate security boundaries. Implementing standardized subject line tags identifies messages containing patient information. Establishing approved contact lists ensures protected information goes only to verified recipients. Creating email templates for common patient communications helps maintain consistency and proper security practices. Developing escalation procedures addresses situations where email might not provide appropriate security for particularly sensitive information. Regular security reviews verify that ProtonMail usage continues to meet both regulatory requirements and organizational security standards as practices evolve.

Is AWS IAM HIPAA Compliant

Is AWS IAM HIPAA Compliant?

AWS Identity and Access Management (IAM) can be part of a HIPAA-compliant AWS environment when properly configured and used to control access to HIPAA-eligible services covered under Amazon’s Business Associate Agreement (BAA). IAM itself provides the access control mechanisms necessary for protecting healthcare data, but doesn’t automatically create HIPAA compliance. Healthcare organizations must implement appropriate IAM policies, permission boundaries, and monitoring to become HIPAA compliant.

Access Control Management

AWS IAM manages access permissions for AWS resources through users, groups, and roles with various policies. Healthcare organizations use IAM to restrict who can access AWS services that store or process protected health information. This service helps fulfill the HIPAA Security Rule requirements for access management and authorization controls. IAM enables detailed permissions that follow the principle of least privilege, giving users only the access they need to perform their jobs. While IAM provides these security capabilities, healthcare organizations remain responsible for configuring them properly to be HIPAA compliant.

Configuration Steps

Healthcare organizations must implement particular IAM configurations to support HIPAA compliance. Multi-factor authentication adds an extra verification layer beyond passwords for accounts accessing patient data. Permission boundaries limit maximum privileges that can be granted to users or roles. IAM policies should restrict access based on job functions and responsibilities. Regular access reviews verify that permissions remain appropriate as staff roles change. Password policies enforce complexity requirements and regular rotation. Organizations typically document these configuration decisions as part of their overall security planning to demonstrate efforts to become HIPAA compliant.

Audit Trail Implementation

HIPAA requires tracking who accesses protected health information and when this access occurs. AWS IAM integrates with CloudTrail to log all user activities and API calls. These logs create audit trails showing who performed what actions within AWS services that manage healthcare data. Organizations must configure appropriate log retention periods based on their compliance requirements. Monitoring tools should alert security teams about suspicious activities like failed login attempts or unusual access patterns. This monitoring capability helps organizations identify potential security issues and respond promptly to maintain HIPAA compliance.

Complementary AWS Security Services

IAM works with other AWS services to create a complete HIPAA compliance environment. AWS Organizations helps manage multiple accounts with centralized policy control for healthcare environments. AWS Key Management Service (KMS) handles encryption keys that protect healthcare data. AWS Secrets Manager securely stores database credentials and API keys. AWS Control Tower provides guardrails that enforce security policies across multiple accounts. Healthcare organizations often implement these services together to create thorough security architectures. This integrated approach helps maintain consistent controls across all systems handling protected health information.

Permission Management Approaches

Effective IAM policy management forms an essential part of maintaining HIPAA compliance. Organizations should document their IAM policy creation and review processes. Templates for common healthcare roles help maintain consistency when creating new accounts. Regular policy reviews identify and remove unnecessary permissions. Automated tools can validate that policies align with security standards and best practices. Changes to IAM permissions should follow change management procedures with appropriate approvals. These practices help organizations maintain proper access controls throughout their AWS environment.

BAA HIPAA Compliant Requirements

AWS offers a Business Associate Agreement (BAA) that applies to specific HIPAA-eligible AWS services used to store, process, or transmit protected health information. AWS Identity and Access Management (IAM) itself does not store or process ePHI, but is used to control access to HIPAA-eligible services covered under the BAA. Healthcare organizations must execute the AWS BAA before storing any patient data in HIPAA-eligible AWS services. While IAM plays a critical role in enforcing access controls, organizations remain responsible for properly configuring and managing IAM as part of their overall HIPAA compliance program.

AI-based Email Security Threats

How to Avoid AI-Based Email Security Threats

Artificial intelligence (AI) has been the hottest topic in technology for the past few years now, with a focus on how it’s transforming business and the way we work. While we’d seen glimpses of AI’s capabilities before, the release of ChatGPT (containing OpenAI’s groundbreaking GPT-3.5 AI model) put the technology’s limitless potential on full display. Soon, stakeholders in every industry looked to find ways to integrate AI into their organizations, so they could harness its huge productivity and efficiency benefits.

The problem? Hackers and bad actors are using AI too, and it’s only strengthening their ability to carry out data breaches, including AI-based email security threats. 

While AI brings considerable advantages to all types of businesses, unfortunately, its vast capabilities can be used for malicious purposes too. With their unparalleled ability to process data and generate content, cybercriminals can use a variety of AI tools to make their attacks more potent, increasing their potential to get past even the most secure safeguards. 

With all this in mind, this post discusses how AI is helping cyber criminals massively scale their efforts and carry out more sophisticated, widespread attacks. We’ll explore how malicious actors are harnessing AI tools to make AI-based email cyber attacks more personalized, potent, and harmful, and cover three of the most common threats to email security that are being made significantly more dangerous with AI. This includes phishing, business email compromise (BEC) attacks, and malware. We’ll also offer strategic insights on how healthcare organizations can best mitigate AI-enhanced email threats and continue to safeguard the electronic protected health information (ePHI) under their care. 

How Does AI Increase Threats To Email Security?

AI’s effect on email security threats warrants particular concern because it enhances them in three ways: by making email-focused attacks more scalable, sophisticated, and difficult to detect.

Scalability 

First and foremost, AI tools allow cybercriminals to scale effortlessly, enabling them to achieve exponentially more in less time, with few additional resources, if any at all. 

The most obvious example of the scalable capabilities of generative AI involves systems that can create new content from simple instructions, or prompts. In particular, large language models (LLMs), such as those found in widely used AI applications like ChatGPT, allow malicious actors to rapidly generate phishing email templates and similar content that can be used in social engineering attacks, with a level of accuracy in writing and grammar not seen before. Now, work that previously would take email cybercriminals hours can be achieved in mere seconds, with the ability to make near-instant improvements and produce countless variations.   

Similarly, should a social engineering campaign yield results, i.e., getting a potential victim to engage, malicious actors can automate the interaction through AI-powered chatbots, which are capable of extended conversations via email. This increases the risk of a cybercriminal successfully fooling an employee at a healthcare organization to grant access to sensitive patient data or reveal their login credentials so they can breach their company’s email system. 

Additionally, AI allows cybercriminals to scale their efforts by automating aspects of their actions, and gathering information about a victim, i.e., a healthcare organization before launching an attack. AI tools also can scan email systems, metadata, and publicly available information on the internet to identify vulnerable targets, and their respective security flaws. They can then use this information to pinpoint and prioritize high-value victims for future cyber attacks.

Sophistication

In addition to facilitating larger and more frequent cyber attacks, AI systems allow malicious actors to make them more convincing. As mentioned above, generative AI allows cybercriminals to create content quickly, and craft higher-quality content than they’d be capable of through their own manual efforts. 

Again, using phishing as an example, AI can refine phishing emails by eliminating grammatical errors and successfully mimicking distinct communication styles to make them increasingly indistinguishable from legitimate emails. Cybercriminals are also using AI to make their fraudulent communications more context-aware, referencing recent conversations or company events and incorporating data from a variety of sources, such as social media, to increase their perceived legitimacy.  

In the case of another common email attack vector, malware, AI can be used to create constantly evolving malware that can be attached to emails. This creates distinct versions of malware that are more difficult for anti-malware tools to stop.

More Difficult to Detect

This brings us to the third way in which AI tools enhance email threats: by making them harder to detect and helping them evade traditional security measures. 

AI-powered email threats can adapt to a healthcare organization’s cybersecurity measures, observing how its defenses, such as spam filters, flag and block malicious activity before automatically adjusting its behavior until it successfully bypasses them. 

After breaching a healthcare organization’s network, AI offers cybercriminals several new and enhanced capabilities that help them expedite the achievement of their malicious objectives, while making detection more difficult. 

These include:  

  • Content Scanning: AI tools can scan emails, both incoming and outgoing, in real-time to identify patterns pertaining to sensitive data. This allows malicious actors to identify target data in less time, making them more efficient and capable of extracting greater amounts of PHI.  
  • Context-Aware Data Extraction: similarly, AI can differentiate between regular text and sensitive data by recognizing specific formats (e.g., medical record numbers, insurance details, social security numbers, etc.)
  • Stealthy Data Exfiltration: analyzing and extracting PHI, login credentials, and other sensitive data from emails, while blending into normal network traffic. 
  • Distributed Exfiltration: instead of transferring large amounts of data at once, which is likely to trigger cyber defenses, hackers can use AI systems that slowly exfiltrate PHI in smaller payloads over time, better blending into regular network activity.

AI and Phishing

Phishing attacks involve malicious actors impersonating legitimate companies, or employees of a company, to trick victims into revealing sensitive patient data. Typical phishing attack campaigns rely on volume and trial and error. The more messages sent out by cybercriminals, the greater the chance of snaring a victim. Unfortunately, AI applications allow malicious actors to raise the efficacy of their phishing attacks in several ways.

First, AI allows scammers to craft higher-quality messaging. One of the limitations of phishing emails for healthcare companies is that they’re often easy to identify, since they are replete with mis-spelled words, poor grammar, and bad formatting. AI allows malicious actors to overcome these inadequacies and create more convincing messages that are more likely to fool healthcare employees.  

On a similar note, because healthcare is a critical industry, it’s consistently under threat from cybercriminals, which are also known as advanced persistent threats (APTs) or even cyber terrorists. By definition, such malicious actors often reside outside the US and English isn’t their first language. 

While, in the past, this may have been obvious, AI now provides machine translation capabilities, allowing cybercriminals to write messages in their native language, translating them to English, and refining them accordingly. Consequently,  scammers can craft emails with fewer tell-tale signs that healthcare organizations can train their employees to recognize. 

Additionally, as alluded to earlier, AI models can produce countless variations of phishing messages, significantly streamlining the trial-and-error aspect of phishing campaigns and allowing scammers to discover which messaging works best in far less time. 

Lastly, as well as enhancing the efficacy of conventional phishing attacks, AI helps improve spear phishing campaigns, a type of fraudulent email that targets a particular organization or employee who works there, as opposed to the indiscriminate, “scatter” approach of regular phishing.

While, traditionally, spear phishing requires a lot of research, AI can scrape data from a variety of sources, such as social media, forums, and other web pages, to automate a lot of this manual effort. This then allows cybercriminals to carry out the reconnaissance required for successful attacks faster and more effectively, increasing their frequency and, subsequently, their rate of success. 

AI and Business Email Compromise (BEC) Attacks

A business email compromise (BEC) is a type of targeted email attack that involves cybercriminals gaining access to or spoofing (i.e., copying) a legitimate email account to manipulate those who trust its owner into sharing sensitive data or executing fraudulent transactions. BEC attacks can be highly effective and, therefore, damaging to healthcare companies, but they typically require extensive research on the target organization to be carried out successfully. However, as with spear phishing, AI tools can drastically reduce the time it takes to identify potential targets and pinpoint possible attack vectors. 

For a start, cybercriminals can use AI to undertake reconnaissance tasks in a fraction of the time required previously. This includes identifying target companies and employees whose email addresses they’d like to compromise, generating lists of vendors that do business with said organization, and even researching specific individuals who are likely to interact with the target.  

Once a target is acquired, malicious actors can use AI tools in a number of terrifying ways to create more convincing messaging. By analyzing existing emails, AI solutions can quickly mimic the writing style of the owner of the compromised account, giving them a better chance of fooling the people they interact with. 

By the same token, they can use information gleaned from past emails to better contextualize fraudulent messages, i.e., adding particular information to make subsequent requests more plausible. For example, requesting data or login credentials in relation to a new project or recently launched initiative. 

Taking this a step further, cybercriminals could supplement a BEC attack with audio or video deepfakes created by AI to further convince victims of their legitimacy. Scammers can use audio deepfakes to leave voicemails or, if being especially brazen, conduct entire phone conversations to make their identity theft especially compelling.

Meanwhile, scammers can create video deepfakes that relay special instructions, such as transferring money, and attach them to emails. Believing the request came from a legitimate source, there’s a chance employees will comply with the request, boosting the efficacy of the BEC attack in the process. Furthermore, the less familiar an employee is with attacks of this kind, the more likely they are to fall victim to them.   

In short, AI models make it easier to carry out BEC attacks, which makes it all the more likely for cybercriminals to attempt them.

AI and Malware 

Malware refers to any kind of malicious software (hence, “mal(icous) (soft)ware”), such as viruses, Trojan horses, spyware, and ransomware, all of which can be enhanced by AI in several ways.

Most notable is AI’s effect on polymorphic malware, which has the ability to constantly evolve to bypass email security measures, making malicious attachments harder to detect. Malware, as with any piece of software, carries a unique digital signature that can be used to identify it and confirm its legitimacy. Anti-malware solutions traditionally use these digital signatures to flag instances of malware, but the signature of polymorphic malware changes as it evolves, allowing it to slip past email security measures. 

While polymorphic malware isn’t new, and previously relied on pre-programmed techniques such as encryption and code obfuscation, AI technology has made it far more sophisticated and difficult to detect. Now, AI-powered polymorphic malware can evolve in real-time, adapting in response to the defense measures it encounters. 

AI can also be used to discover Zero Day exploits, i.e., previously unknown security flaws, within email and network systems in less time. Malicious actors can employ AI-driven scanning tools to uncover vulnerabilities unknown to the software vendor at the time of its release and exploit them before they have the opportunity to release a patch.

How To Mitigate AI-Based Email Security Threats

While AI can be used to increase the effectiveness of email attacks, fortunately, the fundamentals of mitigating email threats remains the same; organizations must be more vigilant and diligent in following email security best practices and staying on top of the latest threats and tools used by cybercriminals. 

Let’s explore some of the key strategies for best mitigating AI-based email threats and better safeguarding the ePHI within your organization.

  • Educate Your Employees: ensure your employees are aware of how AI can enhance existing email threats. More importantly, demonstrate what this looks like in a real-world setting, showing examples of AI-generated phishing and BEC emails compared to traditional messages, what a convincing deepfake looks and sounds like, instances of polymorphic malware, and so on.

    Additionally, conduct regular simulations, involving AI-enhanced phishing, BEC attacks, etc., as part of your employees’ cyber threat awareness training. This gives them first-hand experience in identifying AI-driven email threats, so they’re not caught off-guard when they encounter them in real life. You can schedule these simulations to occur every few months, so your organization remains up-to-date on the latest email threat intelligence.
     
  • Enforce Strong Email Authentication Protocols: ensure that all incoming emails are authenticated using the following:
    • Sender Policy Framework (SPF): verifies that emails are sent from a domain’s authorized servers, helping to prevent email spoofing. 
    • DomainKeys Identified Mail (DKIM): preserves the integrity of the message’s contents by adding a cryptographic signature, mitigating compromise during transit, e.g., stealthy or distributed data exfiltration. 
    • Domain-based Message Authentication, Reporting & Conformance (DMARC): enforces email authentication policies, helping organizations detect and block unauthorized emails that fail SPF or DKIM checks.

By verifying sender legitimacy, preventing email spoofing, and blocking fraudulent messages, these authentication protocols are key defenses against AI-enhanced phishing and business email compromise (BEC) attacks.

  • Access Control: while AI increases the risk of PHI exposure and login credential compromise, the level of access that a compromised or negligent employee has to patient data is another problem entirely. Subsequently, data breaches can be mitigated by ensuring that employees only have access to the minimum amount of data required for their job roles, i.e. role-based access control (RBAC). This reduces the potential impact of a given data breach, as it lowers the chances that a malicious actor can extract large amounts of data from a sole employee.
  • Implement Multi-Factor Authentication (MFA): MFA provides an extra layer of protection by requiring users to verify their identity in multiple ways. So, even in the event that a cybercriminal gets ahold of an employee’s login credentials, they still won’t have sufficient means to prove they are who they claim to be.
  • Establish Incident Response and Recovery Plans: unfortunately, by making them more scalable, sophisticated, and harder to detect, AI increases the inevitability of security breaches. This makes it more crucial than ever to develop and maintain a comprehensive incident response plan that includes strategies for responding to AI-enhanced email security threats.

    By establishing clear protocols regarding detection, reporting, containment, and recovery, your organization can effectively mitigate, or at least minimize, the impact of email-based cyber attacks enhanced by AI. Your incident response plan should be a key aspect of your employee cyber awareness training, so your workforce knows what to do in the event of a security incident. 

Get Your Copy of LuxSci’s 2025 Email Cyber Threat Readiness Report

To learn more about healthcare’s ever-evolving email threat landscape and how to best ensure the security and privacy of your sensitive data, download your copy of LuxSci’s 2025 Email Cyber Threat Readiness Report. 

You’ll discover:

  • The latest threats to email security in 2025, including AI-based attacks
  • The most effective strategies for strengthening your email security posture
  • The upcoming changes to the HIPAA Security Rule and how it will impact healthcare organizations.

Grab your copy of the report here and start increasing your company’s email cyber threat readiness today.