LuxSci

What are the Three Levels of Patient Engagement?

Explanation of Benefits

Patient engagement occurs across three levels: consultation, involvement, and partnership. These progressive levels describe how patients interact with healthcare systems and participate in their care decisions. Healthcare organizations design communication strategies, technologies, and care models to move patients through these engagement levels, ultimately improving health outcomes and patient satisfaction while reducing costs.

The Consultation Level of Patient Engagement

The consultation level marks the starting point for patient engagement in most healthcare settings. At this level, patients receive information about their health conditions and treatment options from healthcare providers. Communication flows primarily from provider to patient, with limited opportunity for patient input. Patients ask basic questions about their care but generally follow provider recommendations without substantial discussion. Healthcare organizations implement patient portals and educational materials to support information sharing at this level. Appointment reminders and basic health tracking tools help patients follow prescribed care plans. The consultation level of patient engagement meets minimum standards for informed consent but doesn’t fully utilize patient knowledge and capabilities in the care process.

The Involvement Level of Patient Engagement

As patients move to the involvement level of engagement, they become more active participants in their healthcare decisions. Providers seek patient input about preferences and priorities when developing treatment plans. Patients regularly track health metrics and report symptoms between appointments using digital tools and paper logs. Care teams establish two-way communication channels through secure messaging and follow-up calls. Patients receive education about their conditions that enables them to make more informed choices about treatment options. Healthcare organizations measure involvement through metrics like patient portal usage, appointment attendance, and treatment plan adherence. The involvement level of patient engagement creates more personalized care experiences while improving clinical outcomes through better treatment adherence and earlier problem identification.

The Partnership Level of Patient Engagement

The partnership level is the most advanced form of patient engagement, where patients function as true collaborators with their healthcare team. Patients and providers make decisions jointly, with providers offering medical expertise while respecting patient values and preferences. Care planning becomes a shared activity with mutually established goals and responsibilities. Patients access and contribute to their health records, adding context to clinical data. Healthcare organizations include patient advisors in program development and quality improvement initiatives. Technology platforms support robust data sharing between patients and providers, integrating patient-generated health data with clinical systems. The partnership level of patient engagement transforms the traditional healthcare hierarchy into a collaborative relationship that recognizes patients’ expertise about their own health experiences.

Factors Influencing Patient Engagement Levels

Several factors determine which level of patient engagement an individual can achieve at any given time. Health literacy affects patients’ ability to understand medical information and participate in decision-making. Cultural backgrounds influence expectations about patient-provider relationships and appropriate levels of involvement. Digital access and technology skills impact how effectively patients can use engagement tools. Chronic conditions often motivate higher engagement levels as patients develop expertise managing long-term health issues. Healthcare system design either facilitates or creates barriers to engagement through appointment scheduling, communication policies, and information accessibility. Provider communication styles and willingness to share decision-making power affect how comfortable patients feel increasing their engagement level.

Measuring Patient Engagement Across Levels

Healthcare organizations use various metrics to assess patient engagement at each level. Survey tools like the Patient Activation Measure (PAM) quantify patients’ knowledge, skills, and confidence in managing their health. Digital platform analytics track how patients interact with portals, mobile apps, and communication tools. Care plan adherence rates indicate how actively patients follow recommended treatments and lifestyle changes. Patient-reported outcome measures capture health improvements resulting from engagement activities. Healthcare utilization patterns often shift as engagement levels increase, with fewer emergency visits and more appropriate preventive care. These measurement approaches help organizations track progress in their patient engagement initiatives and identify areas needing improvement.

Strategies for Advancing Patient Engagement

Healthcare organizations implement targeted strategies to help patients advance through engagement levels. Communication training for clinical staff develops skills in shared decision-making and patient activation. Technology selection focuses on tools accessible to diverse patient populations with varying digital literacy. Care team redesign creates roles dedicated to patient education and self-management support. Process improvements reduce barriers to engagement by simplifying scheduling, communication, and information access. Population segmentation allows for personalised engagement approaches based on patient characteristics and needs. Incentive structures for both providers and patients reward activities that increase engagement levels. Through these strategic approaches, healthcare organizations create environments where patients can progress toward more active participation in their healthcare.

Benefits of Advancing Patient Engagement Levels

Moving patients to higher engagement levels creates substantial benefits for individuals and healthcare systems. Patients experience improved health outcomes as they become more knowledgeable and confident managing their conditions. Clinical quality measures improve through better treatment adherence and more effective care planning. Healthcare costs often decrease with reductions in unnecessary services and better chronic disease management. Patient satisfaction increases when care aligns more closely with individual preferences and priorities. Provider satisfaction improves through more productive interactions and shared responsibility for health outcomes. Healthcare organizations that successfully advance patient engagement across all three levels position themselves for success in value-based payment models that reward better outcomes and patient experiences.

Get in touch

Find The Best Solution For Your Organization

Talk To An Expert & Get A Quote




A member of our staff will reach out to you

Get Your Free E-Book!

LuxSci High Email Deliverability Best Practices Paper

What you’ll learn:

Enter your email to download now!

We respect your privacy. No spam, ever.

Related Posts

How to Set Up HIPAA Compliant Email

How to Set Up HIPAA Compliant Email

Learning how to set up HIPAA compliant email involves selecting appropriate secure email platforms, configuring encryption settings, implementing access controls, and establishing proper business associate agreements with service providers. Healthcare organizations must ensure their email systems meet all HIPAA Security Rule requirements before transmitting any protected health information electronically. The setup process requires careful planning of security configurations, user authentication protocols, and audit logging capabilities that protect patient data throughout transmission and storage.

Platform Selection and Service Provider Evaluation

Choosing the right email service provider is the first step in establishing how to set up HIPAA compliant email. Healthcare organizations evaluating providers must verify their ability to sign comprehensive business associate agreements that specify exactly how patient information will be protected during transmission and storage. The provider’s data centers should maintain appropriate physical security measures, including biometric access controls, environmental monitoring, and redundant power systems that ensure continuous email availability without compromising security.

Service provider certifications provide valuable insight into their security capabilities and compliance experience. SOC 2 Type II audits demonstrate that providers maintain appropriate controls for security, availability, and confidentiality of customer data. HITRUST certification specifically addresses healthcare security requirements and indicates that the provider understands the unique compliance challenges facing healthcare organizations. These certifications should be current and available for review during the vendor selection process.

Geographic data residency requirements may influence provider selection depending on organizational policies and patient preferences. Some healthcare organizations prefer email providers that maintain all servers within United States borders to simplify compliance with various state privacy laws. International providers may offer cost advantages but require additional due diligence to ensure their data handling practices meet American healthcare privacy standards.

Scalability considerations affect long-term success when healthcare organizations experience growth or changes in email usage patterns. Email systems should accommodate increasing numbers of users, higher message volumes, and integration with additional healthcare applications without requiring complete system replacements. Healthcare organizations benefit from understanding how to set up HIPAA compliant email systems that can adapt to changing operational needs while maintaining security standards.

Security Configuration and Encryption Setup

Encryption configuration forms the cornerstone of secure healthcare email systems. Advanced Encryption Standard (AES) 256-bit encryption should activate automatically for all outgoing messages containing patient information, eliminating the risk of staff forgetting to enable security features manually. Transport Layer Security (TLS) 1.2 or higher protocols must secure all connections between email servers, preventing message interception during transmission across public internet networks.

Digital certificate management ensures that email recipients can verify sender authenticity while maintaining message integrity during transmission. Healthcare organizations learning how to set up HIPAA compliant email need certificate authorities that provide reliable identity verification services for their email communications. Certificate renewal processes should operate automatically to prevent service interruptions that could compromise email security or availability.

Key management protocols protect encryption keys from unauthorized access while ensuring legitimate users can decrypt necessary patient communications. Encryption keys should rotate automatically at predetermined intervals, with secure backup procedures that prevent data loss if primary key storage systems fail. Healthcare organizations must maintain documented procedures for key recovery that balance security requirements with operational necessity.

Message archiving configurations must preserve encrypted email communications for required retention periods while maintaining searchability for audit and legal discovery purposes. Archive systems need the same encryption protections as active email systems, with access controls that limit retrieval to authorized personnel. Backup procedures should test data recovery capabilities while ensuring archived communications remain encrypted throughout the backup and restoration process.

User Access Controls and Authentication

Multi-factor authentication provides essential protection for healthcare email accounts containing patient information. Users should provide at least two forms of identification before accessing their email accounts, typically combining passwords with mobile device verification codes, biometric scans, or hardware security tokens. Authentication systems must integrate smoothly with existing healthcare information systems to avoid creating workflow disruptions that might encourage staff to circumvent security measures.

Role-based access permissions ensure that healthcare staff can only view patient communications relevant to their job responsibilities. Physicians need different access levels compared to billing staff or administrative personnel, with granular controls that prevent unauthorized viewing of patient information outside individual care relationships. Access controls should automatically adjust when staff members change roles within the organization or transfer between departments with different patient access requirements.

Session management protocols track user activities within email systems and automatically terminate inactive sessions to prevent unauthorized access from unattended workstations. Session timeout periods should balance security requirements with operational efficiency, allowing sufficient time for healthcare staff to compose thoughtful patient communications without creating security vulnerabilities. Login attempt monitoring detects potential account compromise situations and triggers appropriate security responses.

Password policies must enforce requirements while avoiding overly burdensome rules that encourage staff to write down passwords or reuse credentials across multiple systems. Password managers can help healthcare staff maintain unique, complex passwords for their email accounts while integrating with single sign-on systems that reduce authentication friction. Organizations mastering how to set up HIPAA compliant email often implement password policies that emphasize length over complexity to improve both security and usability.

Business Associate Agreements and Legal Requirements

Comprehensive business associate agreements define the legal framework for email service provider relationships with healthcare organizations. These agreements must specify exactly how the provider will protect patient information, what uses and disclosures are permitted, and detailed procedures for reporting security incidents to the healthcare organization. Agreement terms should address data retention requirements, geographic restrictions on data storage, and procedures for returning or destroying patient information when business relationships terminate.

Liability allocation clauses protect healthcare organizations from financial exposure when email security incidents occur due to provider negligence or system failures. Insurance requirements ensure that email service providers maintain adequate cyber liability coverage to address potential damages from data breaches or privacy violations. Healthcare organizations should verify that provider insurance policies specifically cover HIPAA-related claims and regulatory penalties.

Audit rights allow healthcare organizations to verify that their email providers maintain appropriate security controls and comply with business associate agreement terms. These rights should include access to security audit reports, penetration testing results, and compliance certifications relevant to healthcare data protection. Regular audit schedules help healthcare organizations demonstrate due diligence in vendor oversight during regulatory inspections or legal proceedings.

Termination procedures specify how patient information will be handled when email service relationships end, whether due to contract expiration, service dissatisfaction, or provider business closure. Data return requirements should include specific timelines for transferring patient communications to new email systems, with verification that all copies of patient information are securely destroyed from provider systems. Those understanding how to set up HIPAA compliant email recognize that termination planning prevents patient information from remaining in unsupported systems after service relationships end.

Implementation Planning and Testing

Staff training programs must prepare healthcare workers to use secure email systems effectively while maintaining patient privacy throughout all communications. Training should cover how to recognize secure email platforms, procedures for verifying recipient identities before sending patient information, and guidelines for determining what health information is appropriate for email transmission. Healthcare staff need clear decision-making frameworks that help them choose between email communication and more secure alternatives like telephone calls or encrypted patient portals.

Pilot testing allows healthcare organizations to identify potential issues before implementing email systems organization-wide. Pilot programs should include representative users from different departments and roles to ensure the email system meets diverse operational needs. Testing scenarios should verify that encryption activates properly, access controls function as designed, and audit logging captures all necessary security events for compliance monitoring.

Integration planning addresses how secure email systems will connect with existing electronic health records, practice management software, and other healthcare applications. Data flow mapping helps identify potential security gaps where patient information might transmit between systems without appropriate encryption protection. Healthcare organizations learning how to set up HIPAA compliant email must ensure that all system integrations maintain the same security standards as the primary email platform.

Rollout schedules should phase email system implementation to minimize workflow disruptions while allowing adequate time for user adaptation and troubleshooting. Support procedures must provide healthcare staff with readily available assistance during the transition period when questions about secure email usage are most frequent. Documentation requirements include maintaining records of all configuration settings, security tests, and staff training activities that show compliance with HIPAA requirements.

Monitoring and Maintenance Procedures

When learning how to set up HIPAA compliant email, it is important to know that audit logging systems must capture detailed records of all email activities, including message sending and receiving times, user login attempts, and administrative actions within the email system. Log retention policies should maintain audit records for required periods while ensuring that log storage systems have the same security protections as the primary email platform. Healthcare organizations need procedures for reviewing audit logs to identify potential security incidents or unauthorized access attempts.

Security monitoring tools should provide real-time alerts when unusual email activities occur, such as large volumes of outbound messages, login attempts from unusual locations, or repeated authentication failures. Automated monitoring reduces the burden on healthcare IT staff while ensuring that potential security incidents receive prompt attention. Alert thresholds must balance sensitivity with operational practicality to avoid overwhelming staff with false alarms.

Performance monitoring tracks email system availability, message delivery times, and user satisfaction to ensure that security measures do not create unacceptable operational barriers. Healthcare organizations mastering how to set up HIPAA compliant email balance security requirements with usability needs, recognizing that overly complex systems may encourage staff to find workarounds that compromise patient privacy. Regular performance assessments help identify opportunities to improve both security and user experience within secure email systems.

G2 Reports

LuxSci Earns 11 Badges in G2 Fall 2025 Reports, Including Best Support and Momentum Leader

We’re happy to share that LuxSci has once again been recognized for excellence in the G2 Fall 2025 Reports! Based entirely on verified customer reviews, LuxSci earned 11 G2 badges this season, highlighting our continued commitment to providing exceptional support, driving ROI for our customers, and delivering the best products.

 

From Best Estimated ROI to Momentum Leader, our performance on G2 is a direct reflection of the trust and success of our customers. Let’s take a closer look at what these new accolades mean and why they matter.

What Is G2 and Why Does It Matter?

G2.com is a trusted platform for peer-to-peer business software reviews. G2 publishes quarterly reports that analyze software companies based on verified customer feedback and real-world performance data. For the latest G2 reports, we’re honored to have earned 11 badges for Fall 2025.

Here’s What LuxSci Earned in Fall 2025

LuxSci was awarded a total of 11 badges across multiple categories. These honors reflect customer satisfaction, platform momentum, return on investment, and the quality of support we provide.

LuxSci’s G2 Fall 2025 Badges include:

 

  • Best Support (Secure Email Gateway)
  • Easiest Admin (Email Security)
  • Best Estimated ROI (Email Security)
  • Best Meets Requirements (Secure Email Gateway)
  • Momentum Leader (Multiple Categories)
  • High Performer (Email Encryption)
  • High Performer (Secure Email Gateway)
  • High Performer (Email Security)
  • Users Most Likely to Recommend (Secure Email Gateway)
  • Easiest To Do Business With (Email Encryption)
  • Easiest Setup (Email Encryption)

Why These Badges Matter

Let’s break down a few of the key categories and why they’re worth calling out:

Best Support

This badge shows we’re not just responsive—we’re reliable, helpful, and proactive. Our support team works around the clock to ensure customers feel heard and empowered. It’s a core part of our offering and overall customer experience.

Momentum Leader

This badge is awarded to companies showing significant growth in customer satisfaction, web presence, and employee growth. It means we’re not standing still—we’re scaling smartly, with our customers and partners in mind.

Best Estimated ROI

This one’s big. It means LuxSci offers exceptional value. Customers see real results that justify the investment. This includes secure email with 98% deliverability rates that truly drive better engagement for your healthcare communications and campaigns.

Built for Security and Compliance

At LuxSci, we don’t just build HIPAA compliant, enterprise-grade secure email and marketing tools—we build trusted relationships with our customers and partners. Our focus continues to be:

 

  • Protecting sensitive data with the highest levels of security and compliance
  • Building the best products, so customers have peace of mind
  • Providing unmatched customer support, every step of the way

We’re Not Slowing Down Anytime Soon

With security threats constantly evolving and compliance demands increasing, the need for secure, HIPAA compliant email and communications has never been greater. Whether you’re in healthcare, or regulated industries like financial services, LuxSci is here to ensure your communications stay secure, high-performing, and supported.

 

We’re proud to serve a growing base of professionals who rely on LuxSci every day to keep their sensitive data secure. Want to see what the buzz is about?

 

Explore LuxSci on G2

 

Contact us today to see how we can help you!

Business Associate Agreement

Understanding Business Associate Agreements (BAAs) and Shared Responsibility

Modern-day healthcare organizations rely on a growing array of partners and vendors to provide them with the tools they need to effectively serve patients and customers. 

 

However, while new digital solutions and healthcare ecosystems often result in greater productivity and efficiency, they also increase the number of third parties a company must communicate with and share protected health information (PHI), requiring a business associate agreement (BAA). Unfortunately, this increases the risk of PHI being exposed, as it increases a healthcare organization’s supply chain network and the number of external organizations with access to their data, significantly raising the risk of a security breach. 

 

This is where the concept of shared responsibility comes in. 

 

In this article, we explore the shared responsibility model for data security, explaining the concept, the role of a BAA in shared responsibility, and why healthcare companies need to know how it works and where it factors into their HIPAA compliance efforts. 

What Is The Shared Responsibility Model? 

Shared responsibility is a core data security principle that divides the responsibility for protecting data between a company that collects the data and a vendor that supplies the infrastructure or systems used to process said data.

 

The shared responsibility model grew in prominence as more companies moved to cloud-based environments and applications. In the past, when companies kept their systems and data onsite, they had more control over who could access their data and, subsequently, a better ability to mitigate data security risks.

 

However, in adopting cloud-based infrastructure and applications, companies have to process and store their data in the cloud – often in shared infrastructure with other vendors using the same cloud – which consequently shifts some of the responsibility of information security to the cloud service provider (CSP) itself. This marked a profound shift in the way data was handled, transmitted, and stored – necessitating an evolved approach to data security. 

 

This fundamental shift in the way companies consume infrastructure and use apps ushered in the shared responsibility model: Where the cloud vendor provides the infrastructure or application, including HIPAA compliant and high secure environments, but it’s still the responsibility of the client to configure and use it securely. 

Business Associate Agreements (BAAs) and Shared Responsibility

By detailing the respective responsibilities of healthcare companies or Covered Entities (CEs) and their vendors or Business Associates (BAs) in securing PHI, a Business Associate Agreement is a prime example of shared responsibility. 

 

For example, the Business Associate shoulders the responsibility of providing the data safeguards required by HIPAA to secure patient data, such as infrastructure, encryption, audit logging, and even physical onsite security.

 

The Covered Entity, meanwhile, is responsible for conducting risk assessments, defining access control policies and processes, configuring services accordingly, workforce training, and continuous monitoring.

Additionally, both parties have the obligation to report security incidents to each other, as well as being independently accountable to the U.S. Department of Health and Human Services (HHS).

Why Shared Responsibility Is Essential for HIPAA Compliance

For healthcare companies, having a firm grasp of the shared responsibility model for safeguarding and securing PHI, and how they fit within your overall security posture is essential (for two key reasons).  

Security Gaps

Firstly, clearly understanding the shared responsibility decreases the likelihood of security gaps. If CEs are under the impression that the vendor handles all aspects of data security, they won’t be as vigilant. They’ll be less inclined to configure services, educate their staff accordingly, pay appropriate attention to vendor security alerts, etc. 

 

But the same is also true for BAs: If they assume their client does most of the heavy lifting in securing the data disclosed to them, they could be remiss in their duties to protect it. Without shared responsibility, each side simply assumes the other is covering a safeguard, opening the door for security gaps that malicious actors can exploit.

 

Fortunately, by detailing both parties’ (CEs and BAs) responsibilities and liabilities regarding data protection, a BAA removes this ambiguity and, more importantly, reduces the risk of security gaps. It’s critical to know the details and work with vendors building products for compliance versus implementing a tick-box approach to compliance that places too much burden on the CE.

Covered Entities (CEs) Are Ultimately Accountable

Subsequently, the second reason why it’s essential for CEs to understand the shared responsibility model, and increase their cybersecurity readiness accordingly, is that it’s the CE that’s ultimately held accountable for data breaches. 

 

Mistakenly thinking that a BAA automatically makes them compliant may result in healthcare companies underinvesting in training, monitoring, and incident response. Conversely, understanding that even with a BAA in place, they’re the ones primarily accountable for protecting PHI gives them a greater sense of urgency to properly implement HIPAA compliant security measures. 

The Covered Entity’s Role Within Shared Responsibility

Let’s look at the ways that healthcare companies have to hold up their end in the shared responsibility model. 

Choose Compliance-Conscious Vendors 

First and foremost, companies have to choose the right vendors to supply them with HIPAA compliant services and solutions.

 

Look for companies that market themselves as HIPAA compliant and display a detailed understanding of HIPAA requirements, particularly the HIPAA Security Rule. Do your due diligence and perform deeper dives on potential vendors, researching their stated security features, reviews from existing clients, whether they have certifications like HITRUST – and if they’ve been involved in any data breaches. 

 

Naturally, a core prerequisite of being a HIPAA compliant vendor is being willing to sign a BAA, so you can immediately rule out any vendors not willing to do so. For instance, some healthcare companies may assume they can use widely adopted solutions such as SendGrid, Mailchimp, but they don’t offer a BAA. 

 

Once you’ve confirmed a vendor offers a BAA, look through it to establish its terms and determine if it covers the services you’re interested in. 

Configuration 

Another core component of shared responsibility is comprehensive configuration management. While the BA’s responsibility is to provide a secure solution that satisfies HIPAA requirements, it’s the CE’s responsibility to configure it securely to fit within their IT ecosystem. 

Features that often require configuration include: 

 

  • Access control: Role-based access, Zero Trust, Multi-Factor Authentication (MFA).
  • Encryption settings: Enabling encryption, choosing encryption type, enforcing forced TLS, enabling storage encryption.
  • Feature restrictions: Disabling default configurations that enable integration with non-compliant tools. 
  • Audit logging: Enabling audit logging and configuring log formats.
  • Retention settings: How long to retain audit logs and who is permitted to review them.

Finally, establishing a patch management strategy, i.e., when and how your organization applies software updates, is an important element of configuration.  While the vendor must release updates to fix security vulnerabilities discovered in their solutions, it’s up to healthcare companies to deploy the patches. 

Training

Regardless of how many security features a vendor bakes into their solutions, once deployed by a healthcare company, the tool is only as secure as the practices of their least security-conscious employee. Consequently, companies must train their staff on how to properly use a solution to process protected health information and sensitive data. The more an employee is required to handle PHI, the more thorough and frequent their training should be. 

 

Key aspects of comprehensive cybersecurity training include:

 

  • Common cyber threats: what the most prevalent cyber threats are and how to recognize them.
  • Incident response: how to report a suspected security incident, i.e., who to contact and when. 
  • Specific solution training: how to securely use systems that process PHI
  • Scope awareness: knowing which services within your organization’s IT ecosystem are HIPAA-compliant and which are not

Reporting 

Although both healthcare companies and BAs have notification obligations to the HHS in the event of a data breach involving PHI, it’s the CE that bears most of the investigative burden. 

 

Firstly, while a BA may report a security incident, it’s the CE’s responsibility to conduct a risk assessment to determine the probability of compromise of PHI, assess risk, and determine whether an official notification of a breach to HHS is necessary.

 

Secondly, BAs must notify the CE without unreasonable delay and no later than 60 days after discovery. Although BAs often wait to complete internal investigations before notifying the CE, the CE’s 60-day clock starts upon the BA’s discovery, not upon the BA’s report. Therefore, BA delays can create compliance risks for the CE.

 

To prevent this, where possible, you can include stricter contractual reporting timelines in the BAAs. This constantly keeps your company in the loop, ensuring you have sufficient lead time to complete your own investigations and your HIPAA-regulated deadlines.

LuxSci – Secure Healthcare Communications

Developed specifically to fulfil the stringent regulatory and ever-evolving data security needs of the healthcare sector, LuxSci’s secure email, text, marketing and forms solutions help companies protect PHI and personalize communications.  

 

Equally as importantly, instead of leaving you to “figure it out” – pushing additional responsibility back onto your company – LuxSci has a reputation for the best customer support in the business, offering onboarding, detailed documentation, secure default configurations, and ongoing support to help navigate the murky waters of HIPAA compliance, while getting best-in-class performance out of your solution.

 

Contact LuxSci today to learn more or get a demo.

How to Send HIPAA Compliant Emails

How to Send HIPAA Compliant Emails

Learning how to send HIPAA compliant emails requires understanding encryption standards, authentication protocols, and business associate agreements that protect patient health information during electronic transmission. Healthcare providers must implement safeguards when communicating electronically about patients, ensuring that all email communications meet HIPAA Security Rule requirements for protecting electronic protected health information. Standard consumer email services like Gmail or Outlook cannot guarantee the security measures necessary for healthcare communications, making specialized secure email platforms essential for organizations handling patient data.

Encryption Requirements for Healthcare Email

End-to-end encryption is the foundation for secure healthcare email communications, protecting patient information from unauthorized access during transmission and storage. Healthcare organizations learning how to send HIPAA compliant emails need email systems that encrypt messages using Advanced Encryption Standard (AES) 256-bit encryption or equivalent security protocols before sending communications across public internet networks. The encryption process must protect both the email content and any attachments containing protected health information, ensuring that even if messages are intercepted, the patient data remains unreadable to unauthorized parties.

Message encryption should activate automatically for all healthcare communications rather than requiring manual activation by individual users. This automatic encryption prevents inadvertent transmission of unprotected patient information when staff members forget to activate security features manually. Healthcare email systems also need secure key management protocols that protect encryption keys from unauthorized access while ensuring that legitimate recipients can decrypt and read necessary patient communications.

Transport layer security protocols provide protection during email transmission, creating secure connections between email servers and preventing message interception during delivery. Healthcare organizations should verify that their email providers use TLS 1.2 or higher encryption standards for all message transmissions. Certificate-based authentication adds another security layer by verifying the identity of email recipients before allowing message delivery, preventing misdirected emails containing patient information from reaching incorrect recipients.

Authentication and Access Controls

Multi-factor authentication is a security requirement for healthcare email systems, ensuring that only authorized users can access accounts containing patient communications. Healthcare staff need to provide at least two forms of identification before accessing secure email accounts, combining passwords with mobile device codes, biometric verification, or hardware security tokens. This authentication process protects against unauthorized account access even if passwords are compromised through data breaches or social engineering attacks.

User access controls must reflect the principle of least privilege, granting healthcare staff access only to email communications necessary for their job functions. Physicians need different access levels compared to administrative staff, with role-based permissions preventing unauthorized viewing of patient information outside individual staff members’ care responsibilities. Email systems should maintain detailed audit logs tracking who accesses patient communications, when access occurs, and what actions users perform with protected health information.

Automatic session timeouts provide security by logging users out of email systems after predetermined periods of inactivity. These timeouts prevent unauthorized access when staff members step away from their workstations without properly securing their accounts. Password complexity requirements and password updates strengthen authentication security, though healthcare organizations must balance security requirements with usability to prevent staff from circumventing security measures due to overly complex requirements.

Session management protocols should track concurrent login attempts and prevent multiple simultaneous access sessions for individual user accounts. This monitoring helps detect potential account compromises when unusual access patterns occur, such as logins from multiple geographic locations within short time periods. Email systems need clear protocols for immediately revoking access when staff members leave the organization or when security breaches are detected.

Business Associate Agreements and Compliance

Healthcare organizations must establish comprehensive business associate agreements with their email service providers before transmitting any patient information through electronic communications. These legal agreements define the responsibilities and obligations of both parties regarding protected health information, specifying how the email provider will protect patient data, what uses and disclosures are permitted, and how security incidents will be reported to the healthcare organization. The agreements must cover encryption requirements, data retention policies, and procedures for returning or destroying patient information when business relationships end.

Vendor due diligence processes help healthcare organizations evaluate email service providers to ensure they understand how to send HIPAA compliant emails while meeting all regulatory requirements. This evaluation includes reviewing security certifications, examining data center facilities and security controls, and verifying the provider’s experience with healthcare industry regulations. Healthcare organizations should require proof of cyber liability insurance, incident response capabilities, and security auditing from their email service providers.

Compliance monitoring requires healthcare organizations to conduct periodic assessments of their email security measures and vendor performance. These assessments verify that encryption standards remain current, access controls function properly, and audit logging captures all necessary security events. Healthcare organizations must maintain documentation demonstrating their compliance efforts, including training records, security policies, and incident response procedures related to email communications.

Risk assessments help identify potential vulnerabilities in email security systems and guide updates to security measures as threats evolve. Healthcare organizations should review their email compliance programs annually or whenever changes occur to their operations, technology systems, or regulatory requirements. Documentation of these assessments provides evidence of due diligence in protecting patient information during regulatory audits or security investigations.

Implementation Best Practices

Staff training programs must educate healthcare workers about proper email security practices and when it is appropriate to include patient information in electronic communications. Healthcare staff learning how to send HIPAA compliant emails need clear guidelines about what patient information can be discussed via email versus what requires telephone calls or in-person meetings. Training should cover how to recognize secure email platforms, how to verify recipient identities before sending patient information, and what types of patient data require protection beyond standard email security measures.

Email policy development requires healthcare organizations to establish clear protocols governing patient communication via electronic means. These policies should specify which staff members can send patient information via email, what approval processes are required for sharing sensitive patient data, and how to handle requests from patients who want to receive their health information via email. Policies must also cover how to respond when staff accidentally send patient information to incorrect recipients or when security breaches involving email communications occur.

Testing procedures should verify that email security measures function correctly before implementing systems organization-wide. Healthcare organizations learning how to send HIPAA compliant emails need to conduct penetration testing of their email security systems, verify that encryption activates properly, and confirm that access controls prevent unauthorized viewing of patient information. Testing schedules help identify security vulnerabilities before they can be exploited by malicious actors.

Incident response planning prepares healthcare organizations to handle security breaches involving email communications containing patient information. Response plans should include procedures for containing security incidents, assessing the scope of potential patient information exposure, and notifying affected patients and regulatory authorities when breaches occur. Healthcare organizations must practice their incident response procedures to ensure staff can respond effectively during actual security emergencies.

Patient Communication Considerations

Patient consent requirements vary depending on the type of health information being transmitted and the communication method requested by patients. While healthcare providers can generally communicate with patients about treatment, payment, and healthcare operations without authorization, organizations should obtain written consent before sending detailed medical information via email. Consent forms should explain the security measures in place while acknowledging that email communication carries inherent privacy risks despite protective measures.

Email content guidelines help healthcare staff understand what patient information is appropriate for electronic transmission versus what requires more secure communication methods. Those mastering how to send HIPAA compliant emails recognize that laboratory results, medication changes, andappointment reminders may be suitable for secure email communication, while detailed psychiatric notes, HIV test results, or substance abuse treatment information may require protections or alternative communication methods. Staff need clear decision-making frameworks for evaluating the appropriateness of email communication for different types of patient information.

Alternative communication methods should remain available for patients who prefer not to receive health information via email or who lack secure email access. Understanding how to send HIPAA compliant emails includes recognizing when alternative methods like telephone calls, patient portals, and postal mail provide more appropriate secure alternatives for patient communication while ensuring that lack of email access does not create barriers to necessary healthcare information sharing. Healthcare organizations must accommodate patient preferences while maintaining appropriate security measures for all communication methods.

You Might Also Like

LuxSci Email Deliverability

How to Fix Email Not Delivered Issues?

When an email is not delivered, it triggers communication failures that can disrupt patient care, delay treatments, and create operational inefficiencies throughout healthcare systems. An email not delivered means the intended recipient never receives the message, whether due to spam filtering, server issues, authentication problems, or incorrect email addresses. Healthcare providers, payers, and suppliers experience immediate consequences when critical communications fail to reach their destinations, including missed appointments, delayed care coordination, and lost revenue opportunities. The impact of an email not delivered varies depending on the message type, recipient, and timing, but healthcare organizations consistently see negative effects on patient outcomes and operational performance.

Recovery Strategies For an Email Not Delivered

Recovery strategies after an email not delivered include implementing backup communication methods and improving email authentication protocols. Healthcare organizations can reduce the impact of delivery failures by maintaining multiple contact methods for patients and developing contingency plans for communication disruptions. Regular monitoring of email delivery metrics helps identify patterns of failed deliveries and address underlying causes. Proactive list management and sender reputation monitoring help prevent future instances of email not delivered. Healthcare organizations benefit from establishing dedicated resources for managing email communications, including staff training on delivery best practices and ongoing performance monitoring across different communication channels. These recovery strategies help minimize the long-term impact of email delivery failures on patient care and operational efficiency.

Immediate Consequences

The immediate consequences when an email is not delivered include broken communication chains and missed opportunities for patient engagement. Appointment reminders that fail to reach patients result in higher no-show rates, while lab results trapped in spam folders delay treatment decisions. Healthcare staff may not realize that an email not delivered has occurred until patients miss appointments or fail to respond to time-sensitive communications. Patient portal notifications that go undelivered prevent patients from accessing test results, prescription refills, and discharge instructions. Emergency contact attempts via email may fail when an email not delivered occurs during after-hours situations, forcing healthcare providers to rely on phone calls or postal mail as backup communication methods. These immediate failures create workflow disruptions that require additional staff time and resources to resolve.

Patient Care Disruptions When Email is Not Delivered

Patient care disruptions occur when an email not delivered prevents timely communication between healthcare providers and patients. Referral communications that never arrive can interrupt care coordination between primary physicians and specialists, delaying diagnoses and treatment plans. Pre-operative instructions sent via email may not reach patients, creating safety risks and potential surgical delays. Chronic disease management programs rely heavily on email communication for medication reminders, lifestyle coaching, and progress monitoring. When an email not delivered occurs in these programs, patients may miss medication doses, skip monitoring activities, or fail to attend follow-up appointments. Medication adherence drops significantly when patients do not receive email reminders about prescription refills or dosage changes.

Revenue Impact

Revenue impact from an email not delivered includes lost appointment fees, delayed payments, and reduced patient engagement with healthcare services. Billing statements that fail to reach patients extend collection cycles and increase accounts receivable aging. Insurance pre-authorization requests that go undelivered can delay procedures and reduce reimbursement opportunities. Healthcare organizations lose revenue when marketing emails promoting wellness programs, health screenings, and elective procedures fail to reach patient inboxes. Patient satisfaction scores may decline when communication failures occur, affecting quality bonuses and value-based care payments. The financial impact compounds over time as organizations continue investing in email communication tools that fail to deliver expected returns due to delivery failures.

Operational Inefficiencies from Email Not Delivered

Operational inefficiencies arise when an email not delivered disrupts routine workflows and communication processes. Staff members spend additional time following up on communications that may have been filtered or blocked, reducing productivity and increasing administrative costs. Supply chain communications that fail to reach vendors or suppliers can create inventory shortages and delivery delays. Electronic health record systems generate automated notifications for various clinical events, and when an email not delivered occurs, providers may miss important alerts about patient status changes or test results. Quality improvement initiatives that depend on email communication for data collection and reporting may experience delays when key stakeholders do not receive project updates or meeting notifications.

Technology System Failures

Technology system failures occur when an email not delivered prevents automated notifications from reaching their intended recipients. Practice management software relies on email alerts for appointment scheduling, billing processes, and patient communication workflows. When these notifications fail to deliver, healthcare organizations may experience system-wide communication breakdowns affecting multiple departments. Telemedicine platforms and health information exchanges depend on email notifications to alert providers about new patient data, consultation requests, and system updates. An email not delivered in these systems can prevent providers from accessing important patient information or responding to urgent consultation requests. Integration failures between healthcare applications may occur when email-based data exchange processes fail to complete successfully.

google web hosting

Is Google Web Hosting HIPAA Compliant?

Google web hosting is not HIPAA compliant as a standard service. While Google Cloud Platform can be configured for HIPAA compliance with a Business Associate Agreement (BAA), Google’s simpler hosting services like Firebase Hosting and standard Google Sites do not qualify for HIPAA compliance. Healthcare organizations looking to host websites containing protected health information need properly configured Google Cloud Platform environments with additional security measures in place.

Google Web Hosting Options and Limitations

Google web hosting includes several different services with varying capabilities. Google Cloud Platform provides enterprise-level infrastructure that can support healthcare applications when properly configured. Other Google web hosting options like Firebase Hosting offer simplified deployment but lack healthcare compliance features. Google Sites provides basic website creation tools without the security measures needed for patient information. Healthcare organizations must understand these distinctions when selecting Google hosting services. The default configurations of these platforms do not include the security protections required by HIPAA regulations.

Business Associate Agreements for Google Web Hosting

Healthcare organizations must obtain a Business Associate Agreement before using any Google web hosting service for protected health information. Google offers a BAA that covers specific Google Cloud Platform services but excludes many other Google web hosting options. This agreement establishes Google’s responsibilities for protecting healthcare data according to HIPAA requirements. Organizations must verify which specific services fall under BAA coverage before implementation. Google provides documentation listing covered services and compliance recommendations for healthcare customers. Services not covered by the BAA cannot legally store or process protected health information.

Required Security Configurations

Google web hosting requires specific security measures to achieve HIPAA compliance. Website data storage needs encryption both during transmission and while at rest. Access controls must limit system permissions to authorized personnel through proper authentication methods. Logging systems need to track user actions and system events for compliance documentation. Network security requires protection against unauthorized access through firewall rules and secure configurations. Organizations using web hosting for healthcare websites typically implement additional security tools beyond the default platform offerings. Many healthcare providers employ security specialists familiar with both Google environments and healthcare regulations.

Compliance Documentation Requirements

Using Google web hosting for healthcare websites demands thorough compliance documentation. Organizations must maintain records of their signed BAA with Google and service configurations. Security policies should outline how the hosting environment protects patient information. Risk assessments need documentation showing potential vulnerabilities and mitigation strategies. Access control policies establish who can work with healthcare data and under what circumstances. Incident response plans outline steps for addressing potential security breaches. These documents not only support HIPAA compliance but also provide guidance for technical staff maintaining the website infrastructure.

Alternative Hosting Approaches

Many healthcare organizations choose alternatives to Google web hosting. Specialized HIPAA compliant hosting providers focus exclusively on healthcare needs with pre-configured security measures. These providers often include compliance support services beyond basic hosting. Some organizations maintain healthcare websites on private cloud or on-premises infrastructure for maximum control. Hybrid approaches separate public information on standard hosting from protected health information on compliant systems. The choice between these options depends on organizational resources, technical capabilities, and specific website requirements.

Implementation Best Practices

Healthcare organizations implementing Google web hosting for compliant websites follow established best practices. Data mapping identifies exactly what protected health information appears on the website and where it resides within Google services. Security reviews examine hosting configurations before storing any patient information. Staff training ensures everyone managing the website understands compliance requirements. Regular security assessments identify potential vulnerabilities as technology evolves. Organizations typically establish monitoring systems to alert them about unusual activities that might indicate security issues. These practices help maintain compliance while providing effective web services to patients.

HIPAA Compliant Email Requirements

What Are the HIPAA Compliant Email Requirements?

HIPAA compliant email requirements include encryption protocols, access controls, audit mechanisms, and business associate agreements that healthcare organizations must implement when transmitting protected health information electronically. These requirements mandate security measures, patient authorization management, and documentation controls to protect patient data during email communications. Healthcare entities covered under HIPAA face legal obligations to ensure that all electronic communications containing PHI meet federal privacy and security standards, regardless of whether the communication occurs internally or with external parties.

The regulatory framework governing electronic health information has deveoped to address modern communication methods while maintaining patient privacy protections. Healthcare organizations that fail to implement proper email security measures face potential penalties, breach notification obligations, and reputational damage that can affect patient trust and organizational viability.

PHI & HIPAA Compliant Email Requirements

Protected health information includes any individually identifiable health information transmitted or maintained by covered entities. Email communications containing patient names, treatment details, appointment information, or billing data all fall within PHI classifications that trigger HIPAA compliant email requirements. Healthcare organizations often underestimate the scope of information considered protected, leading to inadvertent violations when staff members discuss patients through standard email platforms.

Routine business communications and PHI create compliance scenarios for healthcare organizations. Administrative emails discussing patient cases, appointment confirmations sent to patients, and interdepartmental consultations all require the same level of protection as formal medical records. This broad interpretation means that healthcare entities cannot rely on informal email practices that might suffice in other industries.

Patient identifiers within email metadata, subject lines, and attachment names also receive protection under federal regulations. Healthcare organizations must consider every aspect of email transmission, including routing information and delivery receipts, when evaluating their compliance posture with HIPAA compliant email requirements.

Encryption Protocols and Security Implementation

Encryption requirements are fundamental to HIPAA compliant email requirements, demanding that healthcare organizations implement both transmission and storage protections for PHI. The HIPAA Security Rule specifies that covered entities must use encryption or equivalent measures when transmitting electronic PHI over open networks, including standard internet email protocols. Healthcare organizations cannot assume that standard email providers offer adequate protection without implementing additional security layers.

End-to-end encryption ensures that email content receives protection throughout the transmission process, preventing unauthorized access even if communications are intercepted during delivery. Healthcare organizations must verify that their chosen encryption methods meet federal standards and provide appropriate key management procedures that prevent unauthorized decryption of patient communications.

Digital certificates and secure email gateways provide additional layers of protection that complement encryption requirements. These technologies help authenticate sender identities, verify message integrity, and ensure that only authorized recipients can access PHI contained within email communications. The implementation of these security measures requires careful planning and ongoing maintenance to ensure continued compliance with HIPAA compliant email requirements.

Administrative Controls and Access Management

User authentication protocols ensure that only authorized personnel can access email systems containing PHI, requiring healthcare organizations to implement strong password policies, multi-factor authentication, and regular access reviews. These administrative controls must reach past simple login procedures to include identity verification processes that prevent unauthorized system access. Healthcare organizations must maintain detailed records of user access privileges and audit these permissions to ensure compliance with minimum necessary standards.

Role-based access controls limit employee exposure to PHI based on job responsibilities and clinical needs, preventing unnecessary access to patient information through email systems. Healthcare organizations must carefully define user roles and corresponding access levels to ensure that employees can perform their duties without accessing information outside their professional requirements. This granular approach to access management helps minimize the risk of inadvertent PHI disclosure while supporting efficient healthcare operations.

Account lifecycle management procedures ensure that employee access to email systems containing PHI is promptly modified or terminated when job responsibilities change or employment ends. Healthcare organizations must implement automated processes that update user privileges based on personnel changes, preventing former employees or transferred staff from maintaining inappropriate access to patient communications.

BAAs and Third-Party Vendors

Email service providers handling PHI on behalf of healthcare organizations must execute business associate agreements that establish clear responsibilities for data protection and breach notification. These contractual arrangements cannot simply reference HIPAA compliance but must specify security measures, and incident response procedures that vendors will implement to protect patient information. Healthcare organizations retain liability for PHI even when using third-party email services, making vendor selection and contract management critical components of HIPAA compliant email requirements.

Cloud-based email platforms present compliance challenges that require careful evaluation of vendor capabilities and contractual protections. Healthcare organizations must assess whether cloud providers can meet encryption requirements, provide adequate audit trails, and support breach investigation activities when PHI incidents occur. The shared responsibility model common in cloud computing arrangements requires clear delineation of security obligations between healthcare organizations and their email service providers.

Vendor risk assessment procedures help healthcare organizations evaluate potential email service providers before entering into business associate relationships. These assessments examine capabilities, security certifications, incident response procedures, and financial stability to ensure that vendors can fulfill their contractual obligations throughout the relationship duration.

HIPAA Compliant Email Requirements for Audit and Monitoring

Audit logging captures detailed records of email activities involving PHI, including message creation, transmission, access, and deletion events that support compliance monitoring and breach investigation activities. Healthcare organizations must implement systems that automatically generate audit trails without relying on manual processes that might miss security events. These logs must include sufficient detail to reconstruct email activities and identify potential policy violations or unauthorized access attempts.

Real-time monitoring capabilities enable healthcare organizations to detect potential HIPAA violations or security incidents as they occur, allowing for immediate response and mitigation measures. Automated alerting systems can flag unusual email patterns, unauthorized access attempts, or policy violations that require investigation by compliance personnel. This approach to monitoring helps healthcare organizations adhere to HIPAA compliant email requirements, and address potential issues before they escalate into reportable breaches.

Log retention policies consider operational needs with storage limitations while ensuring that audit records remain available for the periods specified by federal regulations. Healthcare organizations must develop procedures for archiving, protecting, and eventually disposing of audit logs that contain references to PHI while maintaining the ability to retrieve historical records when needed for compliance or legal purposes.

Implementation Planning for HIPAA Compliant Email Requirements

Phased deployment strategies allow healthcare organizations to implement HIPAA compliant email requirements systematically while minimizing operational disruption and ensuring adequate staff preparation. These approaches begin with pilot programs involving limited user groups before expanding to organization-wide deployment, allowing for process refinement and issue resolution before full implementation. Healthcare organizations must balance the urgency of compliance requirements with the practical challenges of technology deployment and staff adaptation.

Training programs must address both aspects of secure email usage and policy requirements that govern PHI handling in electronic communications. Healthcare staff need practical guidance on identifying PHI within email communications, using encryption tools properly, and recognizing potential security threats that could compromise patient information. Regular training updates help ensure that staff members remain current with evolving threats and regulatory requirements.

Change management procedures help healthcare organizations transition from existing email practices to compliant systems while maintaining productivity and staff satisfaction. These processes must address user resistance, workflow modifications, and performance impacts that accompany the implementation of more secure email practices required by HIPAA regulations.

Incident Response and Breach Management Procedures

Breach detection mechanisms help healthcare organizations identify potential HIPAA violations involving email communications, including unauthorized access, misdirected messages, and system compromises that could expose PHI. These systems must provide timely notification of potential incidents while collecting sufficient information to support investigation and response activities. Healthcare organizations cannot rely solely on user reports of security incidents but must implement automated detection capabilities that identify subtle indicators of compromise.

Investigation procedures ensure that potential email-related breaches receive thorough analysis to determine the scope of PHI exposure and appropriate response measures. Healthcare organizations must maintain incident response teams with the expertise to analyze email systems, assess damage, and coordinate with legal counsel when breach notification obligations arise. Modern email infrastructure requires specialized knowledge to conduct effective investigations and determine whether incidents constitute reportable breaches under federal regulations.

Corrective action planning addresses both immediate incident containment and long-term process improvements that prevent similar violations in the future. Healthcare organizations must document lessons learned from email security incidents and implement systemic changes that strengthen their compliance posture with HIPAA compliant email requirements.

encrypted email transmission

Is the Email Encrypted? How to Tell if an Email is Transmitted Using TLS

SMTP TLS encryption is popular because it provides adequate data protection without creating a complicated user experience for email recipients. Sometimes, though, the experience is too seamless, and recipients may wonder if the message was protected at all.

Luckily, there is a way to tell if an email was encrypted using TLS. To see if a message was sent securely, we can look at the raw headers of the email. However, it requires some knowledge and experience to understand the text. It is actually easier to tell if a recipient’s server supports TLS than to tell if a particular message was securely transmitted.

To analyze a message for transmission security, we will look at an example email message sent from Hotmail to LuxSci. We will explain what to look for when decoding the message headers and how to tell if the email was transmitted using TLS encryption.

An Example Email Message

First, we must understand how an email message typically travels through several machines on its way from the sender to the recipient. Roughly speaking:

  1. The sender’s computer talks to the sender’s email or WebMail server to upload the message.
  2. The sender’s email or WebMail server then talks to the recipient’s inbound email server and transmits the message to them.
  3. Finally, the recipient downloads the message from their email server.

It is step 2 that people are most concerned about when trying to understand if their email message is transmitted securely. They usually assume or check that everything is secure and OK at the two ends. Indeed, most users who need to can take steps to ensure that they are using SSL-enabled WebMail or POP/IMAP/SMTP/Exchange services so that steps 1 and 3 are secure. The intermediate step, where the email is transmitted between two different providers, is where messages may be sent insecurely.

To determine if the message was transmitted securely between the sender’s and recipient’s servers (over TLS), we need to extract the “Received” header lines from the received email message. If you look at the source of the email message, the lines at the top start with “Received.” Let’s look at an example message from a Hotmail user below. The email addresses, IPs, and other information are obviously fake.

LuxSci:

The Outlook email was sent to a LuxSci user. The Received headers appear in reverse chronological order, starting with the server that touched the message last. Therefore, in this example, we see the LuxSci servers first.

Received: from abc.luxsci.com ([1.1.1.1])
	by def.luxsci.com (8.14.4/8.13.8) with ESMTP id r7JEfLgH003867
	(version=TLSv1/SSLv3 cipher=DHE-RSA-AES256-SHA bits=256 verify=NOT)
	for <user-xyz@def.luxsci.com>; Mon, 19 Aug 2019 10:41:21 -0400
Received: from abc.luxsci.com (localhost.localdomain [127.0.0.1])
	by abc.luxsci.com (8.14.4/8.13.8) with ESMTP id r7JEfK0Z030182
	for <user-xyz@def.luxsci.com>; Mon, 19 Aug 2019 09:41:20 -0500
Received: (from mail@localhost)
	by abc.luxsci.com (8.14.4/8.13.8/Submit) id r7JEfKXD030178
	for user-xyz@def.luxsci.com; Mon, 19 Aug 2019 09:41:20 -0500
Received: from dispatch1-us1.ppe-hosted.com (dispatch1-us1.ppe-hosted.com [2.2.2.2])
	by abc.luxsci.com (8.14.4/8.13.8) with ESMTP id r7JEfIkK030002
	(version=TLSv1/SSLv3 cipher=DHE-RSA-AES256-SHA bits=256 verify=NOT)
	for <someone@luxsci.net>; Mon, 19 Aug 2019 09:41:19 -0500

Proofpoint:

LuxSci uses an email filtering service, Proofpoint. Messages reach Proofpoint’s servers before being delivered to LuxSci. Here’s what their servers report about the email transmission:

Received: from unknown [65.54.190.216] (EHLO bay0-omc4-s14.bay0.hotmail.com)
	by dispatch1-us1.ppe-hosted.com.ppe-hosted.com
        (envelope-from <someone@hotmail.com>);
	Mon, 19 Aug 2019 08:41:18 -0600 (MDT)

Outlook:

And finally, here’s what we see from Oultook’s server.

Received: from BAY403-EAS373 ([65.54.190.199]) by bay0-omc4-s14.bay0.outlook.com
       with Microsoft SMTPSVC(6.0.3790.4675); 
       Mon, 19 Aug 2019 07:41:19 -0700

How to Use Received Message Headers to Tell if the Email is Encrypted

The message headers contain information that can help us determine if an email is encrypted. Here are a few helpful notes to help you decode the text:

  1. We said this above, but the message headers appear in reverse chronological order. The first one listed shows the last server that touched the message; the last one is the first server that touched it (typically the sending server).
  2. Each Received line documents what a server did and when.
  3. There are three sets of servers involved in this example: one machine at Hotmail, one machine at Proofpoint, where our Premium Email Filtering takes place, and some machines at LuxSci, where final acceptance of the message and subsequent delivery happened.

Presumably, the processing of email within each provider is secure. The place to be concerned about is the hand-offs between Hotmail and Proofpoint and between Proofpoint and LuxSci, as these are the big hops across the internet between providers.

In the line where LuxSci accepts the message from Proofpoint, we see:

(version=TLSv1/SSLv3 cipher=DHE-RSA-AES256-SHA bits=256 verify=NOT)

This section, typical of most email servers running “sendmail” with TLS support, indicates that the message was encrypted during transport with TLS using 256-bit AES encryption. (“Verify=not” means that LuxSci did not ask Proofpoint for a second SSL client certificate to verify itself, as that is not usually needed or required for SMTP TLS to work correctly). Also, “TLSv1/SSLv3” is a tag that means that “Some version of SSL or TLS was used;” it does not mean that it was SSL v3 or TLS v1.0. It could have been TLS v1.2 or TLS v1.3.

So, the hop between Proofpoint and LuxSci was locked down and secure. What about the hop between Hotmail and Proofpoint? The Proofpoint server’s Received line makes no note of security at all! This means that the email message was probably not encrypted during this step.

Hotmail either did not support opportunistic TLS encryption for outbound emails, or Proofpoint did not support receipt of messages over TLS, and thus, TLS could not be used. With additional context, you can know which server supports TLS and which does not.

In this case, we know that Proofpoint supports inbound TLS encryption. In fact, from another example message where LuxSci sent a message to Proofpoint, we see the Received line:

Received: from unknown [44.44.44.44] (EHLO wgh.luxsci.com)
	by dispatch1-us1.ppe-hosted.com.ppe-hosted.com
        (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits))
	with ESMTP id b-022.p01c11m003.ppe-hosted.com
        (envelope-from <from@domain.com>);
	Mon, 02 Feb 2009 19:28:27 -0700 (MST)

The red text makes it clear that the message was indeed encrypted. Based on the additional context, we can deduce that the Hotmail sending server did not securely transmit the email using TLS.

How To Tell if an Email is Encrypted With TLS

  1. When analyzing your message headers, consider the following items to determine if the email is encrypted:
    1. The receiving server will log what kind of encryption, if any, was used in receiving the message in the headers.
    2. Different email servers use different formats and syntax to display the encryption used. Look for keywords like “SSL,” “TLS,” and “Encryption,” which will signify this information.
    3. Not all servers will record the use of encryption. While LuxSci has always logged encryption use, not every email service provider does. It is possible to use TLS encryption and not log it. Sometimes, there is no way to tell from the headers if a message is encrypted if it is not logged.
    4. Messages passed between servers at the same provider do not necessarily need TLS encryption to be secure. For example, LuxSci has back-channel private network connections between many servers so that information can be securely passed between them without SMTP TLS. So, the lack of TLS usage between two servers does not mean the transmission between them was “insecure.” You may also see multiple received lines listing the same server: the server passes the message between different processes within itself. This communication also does not need to be TLS encrypted.
    5. If you are a LuxSci customer, you can view online email delivery reports to see if TLS was used for any particular message. We record the kind of encryption in the delivery reports, so it’s easy to see which emails were encrypted.

How can you Ensure Emails Are Securely Transmitted?

With some servers not recording TLS in message headers, how can you determine if a message was transmitted securely from sender to recipient?

To answer this question accurately, you must understand the properties, servers, and networks involved. It may be easy to determine that the message was transmitted securely if included in the header information. However, the absence of information does not necessarily mean the message was insecurely transmitted. You can only know this if you know what each system’s servers record.

In our example of a message from Hotmail to LuxSci, you need to know that:

  1. Proofpoint and LuxSci will always log the use of TLS in the headers. We can infer that the Hotmail to Proofpoint transmission was not secure as nothing was recorded there.
  2. The transmission of messages within LuxSci’s infrastructure is secure due to private back channel transmissions. So, even though there is no mention of TLS in every Received line after LuxSci accepts the message from Proofpoint (in this example), transferring the messages between servers in LuxSci is as secure as using TLS. Also, the same server can add multiple received lines as it talks to itself. Generally, these hand-offs on the same server will not use TLS, as there is no need. In the LuxSci example, we see this as “abc.luxsci.com” adds several headers.
  3. We don’t know anything about Hotmail’s email servers, so we don’t know how secure the initial transmissions within their network are. However, since we know they did not securely transmit the message to Proofpoint, we are not confident that the transmissions and processing within Hotmail (which may have gone unrecorded) were secure.

Was the email message sent and received using encryption?

We skipped steps 1 and 3 and focused on step 2 – the transmission between servers. Steps 1 and 3 are equally, if not more, necessary. Why? Because eavesdropping on the internet between ISPs is less of a problem than eavesdropping near the sender and recipient (i.e., in their workplace or local wireless hotspot). So, it’s essential to ensure messages are sent securely and received securely. This means:

  • Sending: Use SMTP over SSL or TLS when sending messages from an email client or use WebMail over a secure connection (HTTPS).
  • Receiving: Ensure your POP or IMAP connection is secured via SSL or TLS. If using WebMail to read your email, be sure it is over a secure connection (HTTPS).
  • WebMail: There is generally no record in the email headers to indicate if a message sent using WebMail was transmitted from the end-user to WebMail over a secure connection (SSL/HTTPS).

You can typically control one side and ensure it is secure; you can’t control the other without taking extra steps. So, what can you do to ensure your message is secure even if it might not be transmitted with encryption or if the recipient tries to access it insecurely?

You could use end-to-end email encryption (like PGP or S/MIME, which are included in SecureLine) or a secure web portal that doesn’t require the recipient to install or set up anything to get your secure email message. These methods meet HIPAA and other regulatory compliance requirements for secure data transmission and provide complete confidence that the message will be sent and received securely.

LuxSci’s SecureLine offers flexible encryption options, including TLS, secure web portal, PGP, and S/MIME. Its dynamic capabilities can determine what types of encryption the recipient’s server supports to ensure your emails are always sent securely. Contact our team today to learn more about how to secure your emails.